Objective: To observe the effect of low-frequency hippocampal stimulation on gamma-amino butyric acid type B (GABA-B) receptor expression in hippocampus pharmacoresistant epileptic rats.
Materials And Methods: Sixteen pharmacoresistant epileptic rats were selected by testing their seizure response to phenytoin and phenobarbital, and they were randomly divided into a pharmacoresistant control group (PRC group, eight rats) and a pharmacoresistant stimulation group (PRS group, eight rats). Another 16 pharmacosensitive epileptic rats were served as control, also divided randomly into a pharmacosensitive control group (PSC group) and a pharmacosensitive stimulation group (PSS group). A stimulation electrode was implanted into the rats' hippocampus in the four groups. Low-frequency hippocampal stimulation was administered twice per day for two weeks. Following these weeks of stimulation, GABA-B receptor-positive neurons were counted and the gray values of GABA-B receptor expression in the rats' hippocampal tissues were measured.
Results: The amygdale stimulus-induced epileptic seizures were decreased significantly in the PRS group compared with the PRC group. The parameters of the amygdale after discharge also were improved after hippocampal stimulation. Simultaneously, the GABA-B receptor-positive neurons increased and the GABA-B expression gray values decreased markedly in the PRS group compared with the PRC group. The same phenomenon also was observed between the PSS group and the PSC group. However, no significant difference was found in the GABA-B receptor-positive neurons and the gray values of GABA-B between the PRS group and the PSC group.
Conclusions: The low-frequency hippocampal stimulation may inhibit the amygdale stimulus-induced epileptic seizures and the after discharges. The antiepileptic effects of the hippocampal stimulation may be achieved partly by increasing the expression of the GABA-B receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1525-1403.2012.00493.x | DOI Listing |
Neural Regen Res
January 2025
Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Adult hippocampal neurogenesis is linked to memory formation In the adult brain, with new neurons in the hippocampus exhibiting greater plasticity during their immature stages compared to mature neurons. Abnormal adult hippocampal neurogenesis is closely associated with cognitive impairment in central nervous system diseases. Targeting and regulating adult hippocampal neurogenesis have been shown to improve cognitive deficits.
View Article and Find Full Text PDFNat Metab
January 2025
Monell Chemical Senses Center, Philadelphia, PA, USA.
The hippocampus (HPC) has emerged as a critical player in the control of food intake, beyond its well-known role in memory. While previous studies have primarily associated the HPC with food intake inhibition, recent research suggests a role in appetitive processes. Here we identified spatially distinct neuronal populations within the dorsal HPC (dHPC) that respond to either fats or sugars, potent natural reinforcers that contribute to obesity development.
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China. Electronic address:
Microglia-mediated neuroinflammation plays a critical role in neuronal damage in neurodegenerative disorders such as Alzheimer's disease. Evidence shows that voltage-gated potassium (Kv) channels regulate microglial activation. We previously reported that copper dyshomeostasis causes neuronal injury via activating microglia.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China. Electronic address:
Neuroinflammation is a key driver of neurological disorders. Evodiamine (EVO), an alkaloid from the traditional Chinese herb Evodia rutaecarpa, possesses potent biological activities, notably anticancer and anti-inflammatory effects. This study investigates EVO's potential to attenuate LPS-induced neuroinflammation, focusing on identifying its therapeutic targets and mechanisms of action.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!