It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either 'low microbial abundance' (LMA) or 'high microbial abundance' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6941.2012.01467.x | DOI Listing |
Microbiol Spectr
November 2024
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
Unlabelled: The microbial communities associated with sponges contribute to the adaptation of hosts to environments, which are essential for the trophic transformation of benthic-marine coupling. However, little is known about the symbiotic microbial community interactions and adaptative strategies of high- and low-microbial abundance (HMA and LMA) sponges, which represent two typical ecological phenotypes. Here, we compared the 1-year dynamic patterns of microbiomes with the HMA sponge and two LMA sponge species sp.
View Article and Find Full Text PDFBMC Genomics
July 2024
Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain.
Background: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes.
View Article and Find Full Text PDFISME J
January 2024
Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom.
Sponges largely depend on their symbiotic microbes for their nutrition, health, and survival. This is especially true in high microbial abundance (HMA) sponges, where filtration is usually deprecated in favor of a larger association with prokaryotic symbionts. Sponge-microbiome association is substantially less understood for deep-sea sponges than for shallow water species.
View Article and Find Full Text PDFSci Total Environ
March 2024
Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy. Electronic address:
Ocean Acidification (OA) profoundly impacts marine biochemistry, resulting in a net loss of biodiversity. Porifera are often forecasted as winner taxa, yet the strategies to cope with OA can vary and may generate diverse fitness status. In this study, microbial shifts based on the V-V 16S rRNA gene marker were compared across neighboring Chondrosia reniformis sponges with high microbial abundance (HMA), and Spirastrella cunctatrix with low microbial abundance (LMA) microbiomes.
View Article and Find Full Text PDFISME Commun
November 2022
National Center for Natural Products Research, University of Mississippi, Oxford, MS, 38677, USA.
Sponges are increasingly recognized as an ecologically important taxon on coral reefs, representing significant biomass and biodiversity where sponges have replaced scleractinian corals. Most sponge species can be divided into two symbiotic states based on symbiont community structure and abundance (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!