Osmotic pressure can regulate matrix gene expression in Bacillus subtilis.

Mol Microbiol

Departments of Physics and Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

Published: October 2012

Many bacteria organize themselves into structurally complex communities known as biofilms in which the cells are held together by an extracellular matrix. In general, the amount of extracellular matrix is related to the robustness of the biofilm. Yet, the specific signals that regulate the synthesis of matrix remain poorly understood. Here we show that the matrix itself can be a cue that regulates the expression of the genes involved in matrix synthesis in Bacillus subtilis. The presence of the exopolysaccharide component of the matrix causes an increase in osmotic pressure that leads to an inhibition of matrix gene expression. We further show that non-specific changes in osmotic pressure also inhibit matrix gene expression and do so by activating the histidine kinase KinD. KinD, in turn, directs the phosphorylation of the master regulatory protein Spo0A, which at high levels represses matrix gene expression. Sensing a physical cue such as osmotic pressure, in addition to chemical cues, could be a strategy to non-specifically co-ordinate the behaviour of cells in communities composed of many different species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828655PMC
http://dx.doi.org/10.1111/j.1365-2958.2012.08201.xDOI Listing

Publication Analysis

Top Keywords

osmotic pressure
16
matrix gene
16
gene expression
16
matrix
10
bacillus subtilis
8
extracellular matrix
8
expression
5
osmotic
4
pressure regulate
4
regulate matrix
4

Similar Publications

SnRK2 kinases sense molecular crowding and form condensates to disrupt ABI1 inhibition.

Sci Adv

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Plants sense and respond to hyperosmotic stress via quick activation of sucrose nonfermenting 1-related protein kinase 2 (SnRK2). Under unstressed conditions, the protein phosphatase type 2C (PP2C) in clade A interact with and inhibit SnRK2s in subgroup III, which are released from the PP2C inhibition via pyrabactin resistance 1-like (PYL) abscisic acid receptors. However, how SnRK2s are released under osmotic stress is unclear.

View Article and Find Full Text PDF

We present a case of Acute Angle-Closure Crisis (AACC) precipitated by primary transient psychogenic polydipsia; we believe that our case is the first of its kind to be reported. A 74-year-old male presented to the emergency department with altered mental status due to acute-onset hyponatremia. Six days after admission, the patient noticed painful loss of vision in his right eye and an ipsilateral headache lasting 10-15 minutes.

View Article and Find Full Text PDF

Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.

View Article and Find Full Text PDF

Determination of Osmotic Flow in Water Transport in an Illitic Clay.

Materials (Basel)

January 2025

Department of Physics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 94901 Nitra, Slovakia.

Experimental studies have shown that osmosis could be one of the mechanisms of water transport in porous materials that act, to a certain extent, as semipermeable membranes. In this paper, an experimental apparatus and the corresponding model to measure and determine the osmotic efficiency, , of bulk porous materials are described. Both the apparatus and model to interpret water transport in samples are modifications of those of Sherwood and Craster.

View Article and Find Full Text PDF

The most severe form of muscular dystrophy (MD), known as Duchenne MD (DMD), remains an incurable disease, hence the ongoing efforts to develop supportive therapies. The dysregulation of autophagy, a degradative yet protective mechanism activated when tissues are under severe and prolonged stress, is critically involved in DMD. Treatments that harness autophagic capacities therefore represent a promising therapeutic approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!