Differential effect of three base modifications on DNA thermostability revealed by high resolution melting.

Anal Chem

Aberystwyth University, IBERS, Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales, UK.

Published: September 2012

High resolution melting (HRM) can detect and quantify the presence of 5-methylcytosine (5mC) in DNA samples, but the ability of HRM to diagnose other DNA modifications remains unexplored. The DNA bases N6-methyladenine and 5-hydroxymethylcytosine occur across almost all phyla. While their function remains controversial, their presence perturbs DNA structure. Such modifications could affect gene regulation, chromatin condensation and DNA packaging. Here, we reveal that DNA containing N6-methyladenine or 5-hydroxymethylcytosine exhibits reduced thermal stability compared to cytosine-methylated DNA. These thermostability changes are sufficiently divergent to allow detection and quantification by HRM analysis. Thus, we report that HRM distinguishes between sequence-identical DNA differing only in the modification type of one base. This approach is also able to distinguish between two DNA fragments carrying both N6-methyladenine and 5-methylcytosine but differing only in the distance separating the modified bases. This finding provides scope for the development of new methods to characterize DNA chemically and to allow for low cost screening of mutant populations of genes involved in base modification. More fundamentally, contrast between the thermostabilizing effects of 5mC on dsDNA compared with the destabilizing effects of N6-methyladenine (m6A) and 5-hydroxymethylcytosine (5hmC) raises the intriguing possibility of an antagonistic relationship between modification types with functional significance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac301459xDOI Listing

Publication Analysis

Top Keywords

dna
11
dna thermostability
8
high resolution
8
resolution melting
8
n6-methyladenine 5-hydroxymethylcytosine
8
differential three
4
three base
4
base modifications
4
modifications dna
4
thermostability revealed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!