Tip enhanced Raman scattering (TERS) microscopy is used to image antibody conjugated nanoparticles on intact cellular membranes. The combination of plasmonic coupling and the resultant electric field obtained from intermediate focusing of a radially polarized source gives rise to Raman images with spatial resolution below 50 nm. Finite element method calculations are used to explain the origins of the observed image resolution and spectroscopic signals. The observed Raman scattering provides information about the biomolecules present near the nanoparticle probes. The results show that aggregates of nanoparticles produce spectroscopic results similar to those reported from other surface enhanced Raman spectroscopies, e.g., shell isolated nanoparticle enhanced Raman spectroscopy (SHINERS) and aggregated nanoparticles; however, TERS enables the detection of isolated nanoparticles on cell membranes where the observed spectra provide information about the interaction of the specific biomolecule conjugated to the nanoparticle probe. These measurements present a new technique for exploring biomolecular interactions on the surface of cells and tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449091 | PMC |
http://dx.doi.org/10.1021/ac301739k | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
The performance of nanomaterials is significantly determined by the interfacial microenvironment, in which a surfactant plays an essential role as the adsorbent, but its involvement in the interfacial reaction is often overlooked. Here, it was discovered that citrate and ascorbic acid, the two primarily used surfactants for colloidal gold nanoparticles (Au NPs), can spontaneously undergo catalytic reaction with trace-level nitrogenous residue under ambient environment to form oxime, which is subsequently cleaved to generate CN or a compound containing the -CN group. Such a catalytic reaction shows wide universality in both reactants, including various carbonaceous and nitrogenous sources, and metal catalysts, including Au, Ag, Fe, Cu, Ni, Pt, and Pd NPs.
View Article and Find Full Text PDFRSC Adv
January 2025
Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.
View Article and Find Full Text PDFSmall
January 2025
KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Non-layered 2D materials offer unique and more advantageous physicochemical properties than those of conventional 2D layered materials. However, the isotropic chemical bonding nature of non-layered materials hinders their lateral growth, making the synthesis of large-area continuous thin films challenging. Herein, a facile kinetically tailored chemical vapor deposition (KT-CVD) approach is introduced for the synthesis of 2D molybdenum nitride (MoN), a representative non-layered material.
View Article and Find Full Text PDFJ Pharm Anal
November 2024
Department of Pharmaceutical Analysis, ISF College of Pharmacy Moga, 142001, Punjab, India.
An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.
View Article and Find Full Text PDFiScience
November 2024
School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China.
The van der Waals thiophosphate GaPS presents additional opportunities for gallium-based semiconductors, but limited research on phonon interactions has hindered optimization on thermal properties. This research undertakes a comprehensive investigation into the anharmonic phonon scattering within GaPS. The findings reveal pronounced anharmonic scattering, with both cubic and quartic phonon scatterings significantly influencing phonon redshift and broadening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!