Reducing effect of mangiferin on serum uric acid levels in mice.

Pharm Biol

Biomedical Engineering Research Center, Kunming Medical University, Kunming, PR China.

Published: September 2012

Context: Mangiferin, a natural bioactive xanthone C-glycoside, is widely present in medicinal plants like the leaf of Mangifera indica L. (Anacardiaceae). It has been reported that mangiferin possesses a variety of biological activities, including antidiabetic, hepatoprotective, anti-inflammatory, antioxidant, and anticarcinogenic.

Objective: The hypouricemic effect and xanthine oxidoreductase (XOR) inhibitory activity of mangiferin were investigated here for the first time.

Materials And Methods: The hypouricemic effect of mangiferin was investigated in normal and hyperuricemic mice induced by potassium oxonate. Mangiferin at a dose of 0.75-100.0 mg/kg was given intragastrically to mice. The serum urate levels were determined using the phosphotungstic acid method. The hepatic activities of xanthine dehydrogenase (XDH) and xanthine oxidase (XOD) in hyperuricemic mice were assayed using commercially available kits.

Results: The results showed that mangiferin at a dose of 1.5, 3.0, and 6.0 mg/kg significantly reduced the serum urate levels (148.7 ± 37.8, 142.2 ± 44.5, 121.7 ± 21.7 µmmol/L) in hyperuricemic mice, compared with untreated hyperuricemic mice (201.8 ± 71.2 µmmol/L). However, mangiferin did not decrease the serum urate levels in normal mice until mangiferin was up to 100 mg/kg. In addition, the hepatic activities of XDH in hyperuricemic mice were significantly decreased by mangiferin, while no changes of XOD were observed. Acute toxicity study in mice showed that mangiferin was very safe at a dose of up to 25 g/kg.

Discussion And Conclusion: These findings demonstrate that mangiferin has the potential to be developed as a new therapeutic agent for the treatment of hyperuricemia and gout.

Download full-text PDF

Source
http://dx.doi.org/10.3109/13880209.2012.663763DOI Listing

Publication Analysis

Top Keywords

hyperuricemic mice
20
serum urate
12
urate levels
12
mangiferin
11
mice
9
mangiferin investigated
8
mangiferin dose
8
hepatic activities
8
mice mangiferin
8
hyperuricemic
5

Similar Publications

The Anti-Neuroinflammatory Effects of Cepharanthine in Uric Acid-Induced Neuroinflammation.

J Ethnopharmacol

January 2025

Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province 050017, China.

Ethnopharmacological Relevance: Cepharanthine (CEP) is an alkaloid extracted from Stephania cephalantha Hayata, a traditional Chinese medicine (TCM) renowned for its heatclearing and dehumidifying properties. For centuries, Stephania cephalantha Hayata has been employed in the treatment of a wide range of diseases, including pain, edema, inflammation, and fever.

Aim Of The Study: Our research aims to investigate the role and mechanism of Cepharanthine in ameliorating uric acid (UA) induced neuroinflammatory responses.

View Article and Find Full Text PDF

Serum uric acid is an end-product of purine metabolism. Uric acid concentrations in excess of the physiological range may lead to diseases such as gout, cardiovascular disease, and kidney injury. The kidney includes a variety of cell types with specialized functions such as fluid and electrolyte homeostasis, detoxification, and endocrine functions.

View Article and Find Full Text PDF

Purpose: Serum uric acid (SUA) is primarily produced through the hydrolysis of purines in the liver, with its excretion largely handled by the kidneys. Urate transporter 1 (URAT1) inhibitors are known to enhance uric acid elimination via the kidneys, but they also increase the risk of kidney stone formation. Currently, xanthine oxidase (XO) inhibitors are the predominant uric-lowering medications on the market.

View Article and Find Full Text PDF

: Current urate-lowering therapies may cause serious side effects in patients. Thus, alternative treatments are needed to regulate uric acid (UA) levels in patients with hyperuricemia associated with kidney injury, and natural antioxidant sources have demonstrated utility in this field. For the first time, our study evaluated the effects of an extract of insects on the levels of xanthine oxidase (XO) enzymes and synthetic free radicals in vitro and in vivo.

View Article and Find Full Text PDF

Cholesterol (Cho) is commonly used to stabilize nanoliposomes; however, there is controversy on the relationship between Cho and health. In this study, we developed a novel multifunctional nanoliposome utilizing structurally similar sitogluside (SG) and dioscin (Dio) instead of Cho to anchor the phospholipid bilayer and synergistically modulate the membrane properties of the nanoliposome (DPPC or DOPC). The storage and gastrointestinal tract stability experiment demonstrated that the changes of physical and chemical properties, including the significantly reduced size and Dio retention rate of nanoliposomes synergistically modulated by SG and Dio compared to those of SG alone, regulated nanoliposomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!