The dominant congenital disorders Apert syndrome, achondroplasia and multiple endocrine neoplasia-caused by specific missense mutations in the FGFR2, FGFR3 and RET proteins respectively-represent classical examples of paternal age-effect mutation, a class that arises at particularly high frequencies in the sperm of older men. Previous analyses of DNA from randomly selected cadaveric testes showed that the levels of the corresponding FGFR2, FGFR3 and RET mutations exhibit very uneven spatial distributions, with localised hotspots surrounded by large mutation-negative areas. These studies imply that normal testes are mosaic for clusters of mutant cells: these clusters are predicted to have altered growth and signalling properties leading to their clonal expansion (selfish spermatogonial selection), but DNA extraction eliminates the possibility to study such processes at a tissue level. Using a panel of antibodies optimised for the detection of spermatocytic seminoma, a rare tumour of spermatogonial origin, we demonstrate that putative clonal events are frequent within normal testes of elderly men (mean age: 73.3 yrs) and can be classed into two broad categories. We found numerous small (less than 200 cells) cellular aggregations with distinct immunohistochemical characteristics, localised to a portion of the seminiferous tubule, which are of uncertain significance. However more infrequently we identified additional regions where entire seminiferous tubules had a circumferentially altered immunohistochemical appearance that extended through multiple serial sections that were physically contiguous (up to 1 mm in length), and exhibited enhanced staining for antibodies both to FGFR3 and a marker of downstream signal activation, pAKT. These findings support the concept that populations of spermatogonia in individual seminiferous tubules in the testes of older men are clonal mosaics with regard to their signalling properties and activation, thus fulfilling one of the specific predictions of selfish spermatogonial selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412839 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042382 | PLOS |
Andrology
September 2024
MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
Am J Hum Genet
September 2024
MRC Weatherall Institute of Molecular Medicine, Oxford OX39DS, UK; Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK; NIHR Oxford Biomedical Research Centre, Oxford OX39DU, UK. Electronic address:
While it is widely thought that de novo mutations (DNMs) occur randomly, we previously showed that some DNMs are enriched because they are positively selected in the testes of aging men. These "selfish" mutations cause disorders with a shared presentation of features, including exclusive paternal origin, significant increase of the father's age, and high apparent germline mutation rate. To date, all known selfish mutations cluster within the components of the RTK-RAS-MAPK signaling pathway, a critical modulator of testicular homeostasis.
View Article and Find Full Text PDFFertil Steril
December 2022
Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom. Electronic address:
Advanced paternal age is associated with an increased risk of fathering children with genetic disorders and other adverse reproductive consequences. However, the mechanisms underlying this phenomenon remain largely unexplored. In this review, we focus on the impact of paternal age on de novo mutations that are an important contributor to genetic disease and can be studied both indirectly through large-scale sequencing studies and directly in the tissue in which they predominantly arise-the aging testis.
View Article and Find Full Text PDFReprod Biomed Online
July 2022
Priority Research Centre for Reproductive Science, College of Engineering, Science and Environment, The University of Newcastle, Callaghan New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights New South Wales, Australia. Electronic address:
Spermatogonial stem cells exhibit a low level of spontaneous mutation that is heavily impacted by paternal age via mechanisms that appear to involve the aberrant repair of DNA damage. This background de-novo mutation frequency can be increased 1000-fold by mutations affecting a key signal transduction pathway that confers upon its descendants a selective advantage, leading to clonal expansion and nests of mutant germ cells in the testes of ageing males. This 'selfish selection' model effectively explains the origin of several dominant developmental disorders, such as achondroplasia and Apert syndrome, but cannot be generalized to account for the majority of de-novo mutations where no selective advantage is apparent.
View Article and Find Full Text PDFHum Reprod Update
October 2021
Competence Centre on Health Technologies, Tartu, Estonia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!