Cystic fibrosis (CF) is the most common genetic disease among Caucasians, and accordingly the cystic fibrosis transmembrane conductance regulator (CFTR) protein has perhaps the best characterized disease mutation spectrum with more than 1,500 causative mutations having been identified. In this study, we took advantage of that wealth of mutational information in an effort to relate site-specific evolutionary parameters with the propensity and severity of CFTR disease-causing mutations. To do this, we devised a scoring scheme for known CFTR disease-causing mutations based on the Grantham amino acid chemical difference matrix. CFTR site-specific evolutionary constraint values were then computed for seven different evolutionary metrics across a range of increasing evolutionary depths. The CFTR mutational scores and the various site-specific evolutionary constraint values were compared in order to evaluate which evolutionary measures best reflect the disease-causing mutation spectrum. Site-specific evolutionary constraint values from the widely used comparative method PolyPhen2 show the best correlation with the CFTR mutation score spectrum, whereas more straightforward conservation based measures (ConSurf and ScoreCons) show the greatest ability to predict individual CFTR disease-causing mutations. While far greater than could be expected by chance alone, the fraction of the variability in mutation scores explained by the PolyPhen2 metric (3.6%), along with the best set of paired sensitivity (58%) and specificity (60%) values for the prediction of disease-causing residues, were marginal. These data indicate that evolutionary constraint levels are informative but far from determinant with respect to disease-causing mutations in CFTR. Nevertheless, this work shows that, when combined with additional lines of evidence, information on site-specific evolutionary conservation can and should be used to guide site-directed mutagenesis experiments by more narrowly defining the set of target residues, resulting in a potential savings of both time and money.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413703 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042336 | PLOS |
Protein sequence evolution in the presence of epistasis makes many previously acceptable amino acid residues at a site unfavorable over time. This phenomenon of entrenchment has also been observed with neutral substitutions using Potts Hamiltonian models. Here, we show that simulations using these models often evolve non-neutral proteins.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France.
Bacterial genomes contain a plethora of secondary replicons of divergent size. Circular replicons must carry a system for resolving dimeric forms, resulting from recombination between sister copies. These systems use site-specific recombinases.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
Ancestral sequence reconstruction (ASR) is typically performed using homogeneous evolutionary models, which assume that the same substitution propensities affect all sites and lineages. These assumptions are routinely violated: heterogeneous structural and functional constraints favor different amino acid states at different sites, and these constraints often change among lineages as epistatic substitutions accrue at other sites. To evaluate how realistic violations of the homogeneity assumption affect ASR, we developed site-specific substitution models and parameterized them using data from deep mutational scanning experiments on three protein families; we then used these models to perform ASR on the empirical alignments and on alignments simulated under heterogeneous conditions derived from the experiments.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Thoracic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
SIRT6, a member of the sirtuin protein family, is recognized as a tumor suppressor. This study investigates the evolutionary history of the SIRT gene family and examines the selective pressures shaping their functional divergence. Insights into the evolution of these genes may enhance our understanding of their roles in disease pathology.
View Article and Find Full Text PDFSci Rep
December 2024
MTA-DE "Momentum" Ecology, Evolution & Developmental Biology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.
The objective to study the influence of microbiome on host fitness is frequently constrained by spatial and temporal variability of microbial communities. In particular, the environment serves as a dynamic reservoir of microbes that provides potential colonizers for animal microbiomes. In this study, we analyzed the microbiome of Hydra oligactis and corresponding water samples from 15 Hungarian lakes to reveal the contribution of environmental microbiota on host microbiome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!