TGF beta signaling and its role in glioma pathogenesis.

Adv Exp Med Biol

Laboratory of Transcription Regulation, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland.

Published: November 2012

Transforming growth factor beta (TGF-β) signaling is involved in the regulation of proliferation, differentiation and survival/or apoptosis of many cells, including glioma cells. TGF-β acts via specific receptors activating multiple intracellular pathways resulting in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the common mediator, Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of many genes. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signaling and activates mitogen-activated protein kinase cascades. Negative regulation of TGF-β/Smad signaling may occur through the inhibitory Smad6/7. Increased expression of TGF-β1-3 correlates with a degree of malignancy of human gliomas. TGF-β may contribute to tumor pathogenesis by direct support of tumor growth, self-renewal of glioma initiating stem cells and inhibiting of anti-tumor immunity. TGF-β1,2 stimulate expression of the vascular endothelial growth factor as well as the plasminogen activator inhibitor and some metalloproteinases that are involved in vascular remodeling, angiogenesis and degradation of the extracellular matrix. Inhibitors of TGF-β signaling reduce viability and invasion of gliomas in animal models and show promises as novel, potential anti-tumor therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-007-4719-7_9DOI Listing

Publication Analysis

Top Keywords

tgf-β signaling
12
growth factor
8
signaling
5
tgf-β
5
tgf beta
4
beta signaling
4
signaling role
4
role glioma
4
glioma pathogenesis
4
pathogenesis transforming
4

Similar Publications

Decapod crustaceans regulate molting through steroid molting hormones, ecdysteroids, synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers.

View Article and Find Full Text PDF

Joint pain is the primary symptom of osteoarthritis (OA) and the main motivator for patients to seek medical care. OA-related pain significantly restricts joint function and diminishes quality of life. Despite the availability of various pain-relieving medications for OA, current treatment strategies often fall short in delivering adequate pain relief.

View Article and Find Full Text PDF

Central nervous system hemangioblastoma (CNS-HB) is the most common manifestation of von Hippel-Lindau disease (VHL). The main axis of the CNS-HB pathway is the VHL-HIF signaling pathway. Recently, we proposed an alternative VHL-JAK-STAT pathway in CNS-HB.

View Article and Find Full Text PDF

This study aims to reveal the potential molecular mechanisms of modified Gegen Qinlian decoction (MGQD) in relieving ulcerative colitis (UC). C57BL/6J mice were used to establish experimental colitis via dextran sodium sulfate (DSS). Body weight, disease activity index (DAI), spleen weight, colon length, and histopathologic features were measured to evaluate the therapeutic effects of MGQD on mice with UC.

View Article and Find Full Text PDF

Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.

Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!