Several distinctive activity patterns have been observed in the brain at rest. The aim of this study was to determine whether the STAI index can be predicted from changes in the oxy- and deoxy-hemoglobin (Hb) concentrations by using two-channel prefrontal cortex (PFC) NIRS data for the resting state. The study population comprised 19 subjects. Each subject performed four trials, each of which consisted of resting with no task for 3 min. Data were acquired using a portable NIRS device equipped with two channels. The prediction algorithm was derived within a Bayesian machine learning framework. The prediction errors for seven subjects were not greater than 5.0. Because the STAI index varied between 20 and 80, these predictions appeared reasonable. The present method allowed prediction of mental status based on the NIRS data at resting condition obtained in the PFC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4614-4989-8_35DOI Listing

Publication Analysis

Top Keywords

nirs data
12
data resting
12
prefrontal cortex
8
resting state
8
bayesian stai
4
stai anxiety
4
anxiety predictions
4
predictions based
4
based prefrontal
4
nirs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!