Various members of the fibroblast growth factor (FGF) family mitigate radiation-induced damage. We designed and synthesized the binding domain peptide of FGF-2 (FGF-P) with a dimer form resistant to peptidase and examined its mitigatory effect on murine bone marrow cells. NIH Swiss mice were exposed to different doses of total body irradiation (TBI) and treated with ten doses of 5 mg/kg FGF-P. We achieved the following results: (1) FGF-P stimulated the growth of bone marrow cells harvested from mice exposed to 3 Gy; (2) on day 25 after 6 Gy TBI, the number of leukocytes and granulocytes was higher in the FGF-P group than in the vehicle-alone group; (3) FGF-P significantly increased the number of pro-B and pre-B cells; and (4) FGF-P treatment in vivo increased the long-term hematopoietic stem cells (LT-HSC) in bone marrow. These data reveal the underlying mechanism by which FGF-P rescued a significant percentage of the exposed mice. The increase of LT-HSC in bone marrow leads to a concomitant increase of pro-B and pre-B cells followed by leukocytes and granulocytes, which in turn enhance immunity against infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4614-4989-8_22 | DOI Listing |
J Dent Sci
January 2025
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Background/purpose: Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.
Background/purpose: studies are essential for understanding cellular responses, but traditional culture systems often neglect the three-dimensional (3D) structure of real implants, leading to limitations in cellular recruitment and behavior largely governed by gravity. The objective of this study was to pioneer a novel 3D dynamic osteoblastic culture system for assessing the biological capabilities of dental implants in a more clinically and physiologically relevant manner.
Materials And Methods: Rat bone marrow-derived osteoblasts were cultured in a 24-well dish with a vertically positioned dental implant.
J Dent Sci
January 2025
Department of Dentistry, Yeungnam University College of Medicine, Daegu, Republic of Korea.
Background/purpose: Membrane-free stem cell components (MFSCCs) have been developed by removing cell membranes with antigens to overcome the limitations associated with cell-based therapies and isolate effective peptides. MFSCCs have been reported to have effects on oral infection sites. Chronic inflammatory diseases cause excessive bone resorption.
View Article and Find Full Text PDFLife Med
February 2023
Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
Life Med
August 2024
Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China.
The immune responses following SARS-CoV-2 infection in children are still under investigation. While coronavirus disease 2019 (COVID-19) is usually mild in the paediatric population, some children develop severe clinical manifestations or multisystem inflammatory syndrome in children (MIS-C) after infection. MIS-C, typically emerging 2-6 weeks after SARS-CoV-2 exposure, is characterized by a hyperinflammatory response affecting multiple organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!