To improve the development of singly cultured bovine embryos, we developed a co-culture method with trophoblastic vesicles. The growth of trophoblastic cells was markedly increased in vitamin-supplemented medium 199 compared with medium 199. Upon co-culture of a single embryo with trophoblastic vesicles in vitamin-supplemented medium 199, embryo development to the blastocyst stage was significantly higher than in embryos co-cultured with trophoblastic vesicles in RPMI 1640 or with cumulus cells in medium 199 (control). In the absence of the vitamin cocktail, co-culture with trophoblastic vesicles in medium 199 did not improve embryo development compared with that of the control. The vitamin cocktail was effective in embryo development when co-cultured with trophoblastic vesicles, but not with cumulus cells. Embryo development was not improved in the absence of co-cultured trophoblastic vesicles, even in the presence of vitamin cocktail. In conclusion, the co-culture system with trophoblastic vesicles in vitamin-supplemented medium 199 efficiently enhances the development of singly cultured embryos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1262/jrd.2012-085 | DOI Listing |
Circ Res
January 2025
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., J.W.A., R.L., F.N., J.S., I.C.).
Background: Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive.
Methods: We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific preeclamptic mice.
Immunol Invest
January 2025
Department of Obstetrics and Gynecology, Medical Centre of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical University, Fujian, China.
Background: MiR-519d-3p, also called specific placenta biomarkers, is a member of the Chromosome 19 miRNA Cluster (C19MC) with the highest concentrations of miRNAs in human placenta and maternal serum. These miRNAs are secreted by fetal trophoblast cells within extracellular vesicles (EVs) and interact with the mother's immune cells, which has been proposed to be crucial for immunological tolerance at the placental-maternal interface. A key mechanism in preeclampsia, a multifactorial, multipath hypertensive pregnancy illness, is an immunological imbalance between the mother and the fetus.
View Article and Find Full Text PDFPlacenta
January 2025
Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA. Electronic address:
Background: Adverse pregnancies outcomes present a clinical dilemma in Perinatal medicine. This is partly due to lack of accuracy of current biomarkers to predict high-risk pregnancies at an earlier stage. The placental alkaline phosphatase (PLAP) carrying extracellular vesicles (EVs), and their cargo have been reported as a source of biomarkers for placental health and an indication of pre-eclampsia progression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Obstetrics and Gynecology, "Victor Babeș" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
Pregnancy complications associated with thrombophilia represent significant risks for maternal and fetal health, leading to adverse outcomes such as pre-eclampsia, recurrent pregnancy loss, and intra-uterine growth restriction (IUGR). They are caused by disruptions in key physiological processes, including the coagulation cascade, trophoblast invasion, angiogenesis, and immune control. Recent advancements in epigenetics have revealed that non-coding RNAs, especially microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and extracellular vesicles (EVs) carrying these RNAs, play crucial roles in the regulation of these biological processes.
View Article and Find Full Text PDFAdv Anat Embryol Cell Biol
January 2025
Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA.
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as pivotal mediators of intercellular communication. Embryo implantation is a critical process in early pregnancy and requires communication between the embryo and maternal uterus. EVs are important in coordinating the communication between the embryo and maternal uterus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!