A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Delayed phenology and reduced fitness associated with climate change in a wild hibernator. | LitMetric

Delayed phenology and reduced fitness associated with climate change in a wild hibernator.

Nature

Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.

Published: September 2012

The most commonly reported ecological effects of climate change are shifts in phenologies, in particular of warmer spring temperatures leading to earlier timing of key events. Among animals, however, these reports have been heavily biased towards avian phenologies, whereas we still know comparatively little about other seasonal adaptations, such as mammalian hibernation. Here we show a significant delay (0.47 days per year, over a 20-year period) in the hibernation emergence date of adult females in a wild population of Columbian ground squirrels in Alberta, Canada. This finding was related to the climatic conditions at our study location: owing to within-individual phenotypic plasticity, females emerged later during years of lower spring temperature and delayed snowmelt. Although there has not been a significant annual trend in spring temperature, the date of snowmelt has become progressively later owing to an increasing prevalence of late-season snowstorms. Importantly, years of later emergence were also associated with decreased individual fitness. There has consequently been a decline in mean fitness (that is, population growth rate) across the past two decades. Our results show that plastic responses to climate change may be driven by climatic trends other than increasing temperature, and may be associated with declines in individual fitness and, hence, population viability.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature11335DOI Listing

Publication Analysis

Top Keywords

climate change
12
spring temperature
8
individual fitness
8
fitness population
8
delayed phenology
4
phenology reduced
4
fitness
4
reduced fitness
4
fitness associated
4
associated climate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!