We develop a mathematical model of nanoparticles depositing onto and penetrating into a biofilm grown in a parallel-plate flow cell. We carry out deposition experiments in a flow cell to support the modeling. The modeling and the experiments are motivated by the potential use of polymer nanoparticles as part of a treatment strategy for killing biofilms infecting the deep passages in the lungs. In the experiments and model, a fluid carrying polymer nanoparticles is injected into a parallel-plate flow cell in which a biofilm has grown over the bottom plate. The model consists of a system of transport equations describing the deposition and diffusion of nanoparticles. Standard asymptotic techniques that exploit the aspect ratio of the flow cell are applied to reduce the model to two coupled partial differential equations. We perform numerical simulations using the reduced model. We compare the experimental observations with the simulation results to estimate the nanoparticle sticking coefficient and the diffusion coefficient of the nanoparticles in the biofilm. The distributions of nanoparticles through the thickness of the biofilm are consistent with diffusive transport, and uniform distributions through the thickness are achieved in about four hours. Nanoparticle deposition does not appear to be strongly influenced by the flow rate in the cell for the low flow rates considered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524401 | PMC |
http://dx.doi.org/10.1007/s10439-012-0626-0 | DOI Listing |
Biochem Genet
December 2024
Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, No.57 Xingning Road, Ningbo, 315040, Zhejiang, China.
Alzheimer's disease (AD) and mild cognitive impairment (MCI) are a serious global public health problem. The aim of this study was to analyze the key molecular pathological mechanisms that occur in early AD progression as well as MCI. Expression profiling data from brain homogenates of 8 normal volunteers, and 6 patients with prodromal AD who had developed MCI were analyzed, and the data were obtained from GSE12685.
View Article and Find Full Text PDFClin Transl Med
January 2025
Outcomes Research Consortium®, Houston, Texas, USA.
The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia).
View Article and Find Full Text PDFJ Mol Histol
December 2024
Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, P.R. China.
Recurrent pregnancy loss (RPL) is the occurrence of two or more consecutive miscarriages before 20 weeks of gestation. Recent research has increasingly focused on the role of oxidative stress in RPL, providing insights into its underlying mechanisms and potential therapeutic targets. Oxidative stress arises from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, leading to cellular damage and inflammation.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
LIMES, University of Bonn, Bonn, Germany.
Light can be used as a precise and reversible trigger for the activation of optogenetic tools with subcellular resolution. The interaction of the photoreceptor PAL and aptamer 53 was integrated into a CRISPR/dCas9 system, which can be applied for light-controlled activation of gene expression. Here, we describe a protocol for in vitro application of light-dependent overexpression using eBFP as a proof of concept.
View Article and Find Full Text PDFMol Cell Biochem
December 2024
Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to Be University), Pune-Satara Road, Pune, 411043, India.
GDM is an increasing global concern, with its etiology not fully understood, though altered placental function is likely to play a role. Placental angiogenesis, essential for sufficient blood flow and nutrient exchange between mother and fetus, may be affected by GDM. However, the role of angiogenic markers in GDM remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!