Context: Transforming growth factor-beta1 (TGF-B1) is a highly pleiotropic cytokine whose functions include a central role in the induction of fibrosis.

Objective: To investigate the hypothesis that elevated plasma levels of TGF-B1 are positively associated with incident heart failure (HF).

Participants And Methods: The hypotheses were tested using a two-phase case-control study design, ancillary to the Cardiovascular Health Study - a longitudinal, population-based cohort study. Cases were defined as having an incident HF event after their 1992-1993 exam and controls were free of HF at follow-up. TGF-B1 was measured using plasma collected in 1992-1993 and data from 89 cases and 128 controls were used for analysis. The association between TGF-B1 and risk of HF was evaluated using the weighted likelihood method, and odds ratios (OR) for risk of HF were calculated for TGF-B1 as a continuous linear variable and across quartiles of TGF-B1.

Results: The OR for HF was 1.88 (95% confidence intervals [CI] 1.26-2.81) for each nanogram increase in TGF-B1, and the OR for the highest quartile (compared to the lowest) of TGF-B1 was 5.79 (95% CI 1.65-20.34), after adjustment for age, sex, C-reactive protein, platelet count and digoxin use. Further adjustment with other covariates did not change the results.

Conclusions: Higher levels of plasma TGF-B1 were associated with an increased risk of incident heart failure among older adults. However, further study is needed in larger samples to confirm these findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143419PMC
http://dx.doi.org/10.1016/j.cyto.2012.07.013DOI Listing

Publication Analysis

Top Keywords

heart failure
12
transforming growth
8
failure older
8
older adults
8
cardiovascular health
8
health study
8
tgf-b1
8
incident heart
8
study
5
growth factor
4

Similar Publications

A growing body of evidence suggest that the stem cell antigen-1 expressing (Sca-1) cells in the heart may be the cardiac endothelial stem/progenitor cells. Their endothelial cell (EC) functions, and their role in RV physiology and pathophysiology of right heart failure (RHF) remains poorly defined. This study investigated EC characteristics of rat cardiac Sca-1 cells, assessed spatial distribution and studied changes in Sca1 cells during RV remodelling in monocrotaline (MCT) model of pulmonary hypertension and RV remodeling.

View Article and Find Full Text PDF

Atrial cardiomyopathy (AC) has been defined by the European Heart Rhythm Association as "Any complex of structural, architectural, contractile, or electrophysiologic changes in the atria with the potential to produce clinically relevant manifestations".1 The left atrium (LA) plays a key role in maintaining normal cardiac function; in fact atrial dysfunction has emerged as an essential determinant of outcomes in different clinical scenarios, such as valvular diseases, heart failure (HF), coronary artery disease (CAD) and atrial fibrillation (AF). A comprehensive evaluation, both anatomical and functional, is routinely performed in cardiac imaging laboratories.

View Article and Find Full Text PDF

Introduction: Cardiac amyloidosis typically causes restrictive cardiomyopathy, in which the impairment of diastolic function is dominant. Echocardiography provides prognostic information through some important parameters: left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS). However, LVEF often remains preserved despite disease progression, and GLS is not routinely performed as it is limited by suboptimal image quality.

View Article and Find Full Text PDF

Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.

View Article and Find Full Text PDF

Long-term, immunosuppression-free allograft survival has been induced in human and nonhuman primate (NHP) kidney recipients after nonmyeloablative conditioning and donor bone marrow transplantation (DBMT), resulting in transient mixed hematopoietic chimerism. However, the same strategy has consistently failed in NHP heart transplant recipients. Here, we investigated whether long-term heart allograft survival could be achieved by cotransplanting kidneys from the same donor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!