Human malaria is caused by the cyclical invasion of the host's red blood cells (RBCs) by the invasive form of the parasite, the merozoite. The invasion of the RBC involves a range of parasite ligand receptor interactions, a process which is under intensive investigation. Two protein families are known to be important in the recognition and invasion of the human erythrocyte, the erythrocyte-binding like (EBL) proteins and the reticulocyte binding like proteins, of which the Py235 family in Plasmodium yoelii is a member. Recently the nucleotide binding domain (NBD94), that plays a role in ATP sensing, and the erythrocyte binding domain (EBD) of Py235, called EBD(1-194), have been identified. Binding of ATP leads to conformational changes within Py235 from P. yoelli and results in enhanced binding of the protein to the RBC. Structural features of these domains have been obtained, providing the platform to discuss how the structural architecture creates the basis for an interplay of the sensing NBD and the EBD domain in Py235. In analogy to the receptor-mediated ligand-dimerization model of the EBL proteins PvDBP and PfEBA-175 from Plasmodium vivax and Plasmodium falciparum, respectively, we hypothesise that Py235 of P. yoelii binds via its EBD(1-194) domain to the RBC receptor, thereby inducing dimerization of the Py235-receptor complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpara.2012.07.004 | DOI Listing |
Sci Adv
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.
View Article and Find Full Text PDFPLoS Genet
January 2025
Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America.
Mutations of the Cullin-3 (Cul3) E3 ubiquitin ligase are associated with autism and schizophrenia, neurological disorders characterized by sleep disturbances and altered synaptic function. Cul3 engages dozens of adaptor proteins to recruit hundreds of substrates for ubiquitination, but the adaptors that impact sleep and synapses remain ill-defined. Here we implicate Insomniac (Inc), a conserved protein required for normal sleep and synaptic homeostasis in Drosophila, as a Cul3 adaptor.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
The mitotic spindle is composed of distinct networks of microtubules, including interpolar bundles that can bridge sister kinetochore fibers and bundles that organize the spindle midzone in anaphase. The crosslinking protein PRC1 can mediate such bundling interactions between antiparallel microtubules. PRC1 is a substrate of mitotic kinases including CDK/cyclin-B, suggesting that it can be phosphorylated in metaphase and dephosphorylated in anaphase.
View Article and Find Full Text PDFVirus Genes
January 2025
Sulaimani Veterinary Directorate, Sulaimani Veterinary Laboratory, Microbiology Department, Sulaimani, Iraq.
Avian influenza virus (AIV) remains a significant global threat, with periodic reemergence in Iraq. This study marks the first molecular characterization of the highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!