Background: Oxidative stress and endothelial dysfunction are closely associated with hypertension and insulin resistance (IR) in metabolic syndrome (MetS). It is still controversial whether green tea extract (GTE) may have blood pressure (BP) lowering effect. Decaffeinated GTE might be presumed to have strong antioxidative effect and BP-lowering effect as compared with catechins. Thus we investigated whether decaffeinated-GTE could attenuate hypertension and IR by improving endothelial dysfunction and reducing oxidative stress in a rat model of MetS.

Methods And Results: 20 Otsuka Long-Evans Tokushima Fatty (OLETF) rats at 13 weeks old, MetS rats, were randomized into a saline treated group (OLETF; n = 10) and a group treated with decaffeinated-GTE (25 mg/kg/day) (GTE-OLETF; n = 10). Intraperitoneal glucose tolerance tests and BP measurements were performed at 13 and 25 weeks. Decaffeinated-GTE significantly reduced BP (OLETF vs. GTE-OLETF; 130 ± 7 vs. 121 ± 3 mmHg, p = 0.01), fasting/postprandial 2 h glucose (141 ± 18/159 ± 13 vs. 115 ± 7/132 ± 16 mg/dL, p = 0.009/0.002) and insulin levels (4.8 ± 2.3 vs. 2.4 ± 1.3 ng/mL, p < 0.001). Decaffeinated-GTE significantly reduced vascular reactive oxygen species (ROS) formation and NADPH oxidase activity, and improved endothelium dependent relaxation in the thoracic aorta of OLETF rats. Decaffeinated-GTE also suppressed the expression of p47 and p22phox (NADPH oxidase subunits) in the immunohistochemical staining, and stimulated phosphorylation of endothelial nitric oxide synthase (eNOS) and Akt in the immunoblotting of aortas.

Conclusions: Decaffeinated-GTE reduced the formation of ROS and NADPH oxidase activity and stimulated phosphorylation of eNOS and Akt in the aorta of a rat model of MetS, which resulted in improved endothelial dysfunction and IR, and eventually lowered BP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2012.07.006DOI Listing

Publication Analysis

Top Keywords

rat model
12
endothelial dysfunction
12
decaffeinated-gte reduced
12
nadph oxidase
12
green tea
8
tea extract
8
hypertension insulin
8
insulin resistance
8
metabolic syndrome
8
oxidative stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!