Bursting the bubble on bacterial biofilms: a flow cell methodology.

Biofouling

School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.

Published: November 2012

The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and reliable methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438488PMC
http://dx.doi.org/10.1080/08927014.2012.716044DOI Listing

Publication Analysis

Top Keywords

bacterial biofilms
8
flow cell
8
bursting bubble
4
bubble bacterial
4
biofilms flow
4
cell methodology
4
methodology flow
4
cell biofilm
4
biofilm system
4
system tool
4

Similar Publications

Pseudomonas aeruginosa is a key concern in clinical settings due to its high level of resistance to antibiotics, making infections given rise to this bacterium very problematic to treat. The rise of multidrug-resistant bacteria poses a danger to treatments and stresses the necessity to find new antimicrobial drugs. In a neoteric study, P.

View Article and Find Full Text PDF

Carbapenem resistant Acinetobacter baumannii has evolved as the most troublesome microorganism with multiple virulence factors. Biofilm formation, porins, micronutrient capturing mechanism and quorum sensing, provide protection against desiccation, host-pathogen killing and enhance its persistence. The conservation of these factors between colonizing and pathogenic carbapenem resistant A.

View Article and Find Full Text PDF

Objective: The presence of microorganisms in a wound may lead to the development of pathologically extensive inflammation, and either delay or prevent the healing of hard-to-heal (chronic) wounds. The aim of this case series is to explore the use of topical gentamicin ointment, an aminoglycoside with activity against aerobic Gram-negative bacteria, as an option to address hard-to-heal wounds.

Method: We present a retrospective case series of patients with hard-to-heal wounds of varying pathophysiologies treated with topical gentamicin.

View Article and Find Full Text PDF

Fungal periprosthetic joint infections (PJIs) are rare but increasingly recognized complications following total joint arthroplasty (TJA). While remains the most common pathogen, non-albicans species and other fungi, such as , have gained prominence. These infections often present with subtle clinical features and affect patients with significant comorbidities or immunosuppression.

View Article and Find Full Text PDF

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!