We report fully quantum simulations of realistic models of boron-doped graphene-based field-effect transistors, including atomistic details based on DFT calculations. We show that the self-consistent solution of the three-dimensional (3D) Poisson and Schrödinger equations with a representation in terms of a tight-binding Hamiltonian manages to accurately reproduce the DFT results for an isolated boron-doped graphene nanoribbon. Using a 3D Poisson/Schrödinger solver within the non-equilibrium Green's function (NEGF) formalism, self-consistent calculations of the gate-screened scattering potentials induced by the boron impurities have been performed, allowing the theoretical exploration of the tunability of transistor characteristics. The boron-doped graphene transistors are found to approach unipolar behavior as the boron concentration is increased and, by tuning the density of chemical dopants, the electron-hole transport asymmetry can be finely adjusted. Correspondingly, the onset of a mobility gap in the device is observed. Although the computed asymmetries are not sufficient to warrant proper device operation, our results represent an initial step in the direction of improved transfer characteristics and, in particular, the developed simulation strategy is a powerful new tool for modeling doped graphene nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn3024046DOI Listing

Publication Analysis

Top Keywords

boron-doped graphene
12
field-effect transistors
8
atomistic boron-doped
4
graphene
4
graphene field-effect
4
transistors route
4
route unipolar
4
unipolar characteristics
4
characteristics report
4
report fully
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!