Objective: To study the effects of environmental factors on the degree of injury and expression of vascular endothelial growth factor (VEGF) and interleukin-1 (IL-1) in cartilage cells of the joint in a rat model of adjuvant arthritis (AA).

Methods: SD rats aged 10 months were randomly divided into 4 groups that varied by temperature and humidity housing conditions and induction of AA: a control group, a model group, a cold-damp group, and a hot-damp group. All groups except the control group were induced with AA. After 4 w, VEGF and IL-1 expression in cartilage cells of ankle joints of hind limbs were observed.

Results: Mean area, optical density, and numbers of VEGF- and IL-1-positive cells in the model group, the cold-damp group, and the hot-damp group were significantly higher than that of the control group (all P < 0.05). Optical density and positive cell numbers in the cold-damp group and the hot-damp group were significantly higher than that of the model group (all P < 0.05). Optical density and positive cell numbers in the hot-damp group were significantly higher than that of the cold-damp group. Bone in the hot-damp and cold-damp groups was severely injured.

Conclusion: Environmental factors such as high humidity combined with either high or low temperature increase the severity of damage and expression of VEGF and IL-1 in cartilage cells of joints in rats induced with AA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0254-6272(13)60021-7DOI Listing

Publication Analysis

Top Keywords

cartilage cells
16
cold-damp group
16
hot-damp group
16
group
14
vegf il-1
12
control group
12
model group
12
group hot-damp
12
optical density
12
group higher
12

Similar Publications

Evaluation of Cartilage-Like Matrix Formation in a Nucleus Pulposus-Derived Cartilage Analog Scaffold.

J Biomed Mater Res B Appl Biomater

January 2025

The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.

View Article and Find Full Text PDF

Pseudoachondroplasia (PSACH), a severe dwarfing condition characterized by impaired skeletal growth and early joint degeneration, results from mutations in cartilage oligomeric matrix protein (COMP). These mutations disrupt normal protein folding, leading to the accumulation of misfolded COMP in chondrocytes. The MT-COMP mouse is a murine model of PSACH that expresses D469del human COMP in response to doxycycline and replicates the PSACH chondrocyte and clinical pathology.

View Article and Find Full Text PDF

Advancement of 3D biofabrication in repairing and regeneration of cartilage defects.

Biofabrication

January 2025

Department of Orthopaedics, Tangdu Hospital Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi 'an City, Xi'an, Shaanxi, 710038, CHINA.

Three-dimensional (3D) bioprinting, an additive manufacturing technology, fabricates biomimetic tissues that possess natural structure and function. It involves precise deposition of bioinks, including cells, and bioactive factors, on basis of computer-aided 3D models. Articular cartilage injurie, a common orthopedic issue.

View Article and Find Full Text PDF

Background: This study aimed to investigate the impact of AM1241 on lipopolysaccharide (LPS)-induced chondrocyte inflammation in mice and its potential mechanism for improving osteoarthritis (OA).

Methods: The OA mice model was established employing the refined Hulth method. The impact of different concentrations of AM1241 on mice chondrocyte activity was detected using CCK-8.

View Article and Find Full Text PDF

Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease that causes chronic pain and joint dysfunction. However, the current understanding of TMJOA pathogenesis is limited and necessitates further research. Animal models are crucial for investigating TMJOA due to the scarcity of clinical samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!