Staphylococcus aureus is a common inhabitant of the human nasopharynx. It is also a cause of life-threatening illness, producing a potent array of virulence factors that enable survival in normally sterile sites. The transformation of S. aureus from commensal to pathogen is poorly understood. We analyzed S. aureus gene expression during adaptation to the lung using a mouse model of S. aureus pneumonia. Bacteria were isolated by bronchoalveolar lavage after residence in vivo for up to 6 hours. S. aureus in vivo RNA transcription was compared by microarray to that of shake flask grown stationary phase and early exponential phase cells. Compared to in vitro conditions, the in vivo transcriptome was dramatically altered within 30 minutes. Expression of central metabolic pathways changed significantly in response to the lung environment. Gluconeogenesis (fbs, pckA) was down regulated, as was TCA cycle and fermentation pathway gene expression. Genes associated with amino acid synthesis, RNA translation and nitrate respiration were upregulated, indicative of a highly active metabolic state during the first 6 hours in the lung. Virulence factors regulated by agr were down regulated in vivo and in early exponential phase compared to stationary phase cells. Over time in vivo, expression of ahpCF, involved in H(2)O(2) scavenging, and uspA, which encodes a universal stress regulator, increased. Transcription of leukotoxic α and β-type phenol-soluble modulins psmα1-4 and psmβ1-2 increased 13 and 8-fold respectively; hld mRNA, encoding δ-hemolysin, was increased 9-fold. These were the only toxins to be significantly upregulated in vivo. These data provide the first complete survey of the S. aureus transcriptome response to the mammalian airway. The results present intriguing contrasts with previous work in other in vitro and in vivo models and provide novel insights into the adaptive and temporal response of S. aureus early in the pathogenesis of pneumonia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410880PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041329PLOS

Publication Analysis

Top Keywords

aureus
8
staphylococcus aureus
8
aureus transcriptome
8
adaptation lung
8
virulence factors
8
gene expression
8
stationary phase
8
early exponential
8
exponential phase
8
phase cells
8

Similar Publications

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

Antimicrobial and Antibiofilm Activities of Urinary Catheter Incorporated with ZnO-Carbon Nanotube.

ACS Appl Bio Mater

January 2025

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.

Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.

View Article and Find Full Text PDF

The urgent need to address the growing problem of antimicrobial resistance in multidrug-resistant bacteria requires the development of pioneering approaches to treatment. The present study aims to evaluate the antimicrobial potential of the essential oils (EOs) of Moringa oleifera (moringa), Cinnamomum verum (cinnamon), and Nigella sativa (black seed) and the synergistic effect of the mixture of these oils against Staphylococcus aureus MCC 1351. Statistical modeling revealed cinnamon oil had the highest individual antimicrobial potency, followed by black seed oil.

View Article and Find Full Text PDF

A novel polysaccharide in the envelope of influences the septal secretion of preproteins with a YSIRK/GXXS motif.

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Unlabelled: Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In , a small subset of secreted precursors carries a YSIRK/GXXS motif.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!