Purpose: Usher syndrome (USH) is an autosomal recessive disorder divided into three distinct clinical subtypes based on the severity of the hearing loss, manifestation of vestibular dysfunction, and the age of onset of retinitis pigmentosa and visual symptoms. To date, mutations in seven different genes have been reported to cause USH type 1 (USH1), the most severe form. Patients diagnosed with USH1 are known to be ideal candidates to benefit from cochlear implantation.
Methods: Genome-wide linkage analysis using Affymetrix GeneChip Human Mapping 10K arrays were performed in three cochlear implanted Saudi siblings born from a consanguineous marriage, clinically diagnosed with USH1 by comprehensive clinical, audiological, and ophthalmological examinations. From the linkage results, the USH1G gene was screened for mutations by direct sequencing of the coding exons.
Results: We report the identification of a novel p.S243X truncating mutation in USH1G that segregated with the disease phenotype and was not present in 300 ethnically matched normal controls. We also report on the novel retinal findings and the outcome of cochlear implantation in the affected individuals.
Conclusions: In addition to reporting a novel truncating mutation, this report expands the retinal phenotype in USH1G and presents the first report of successful cochlear implants in this disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413430 | PMC |
PLoS Biol
January 2025
RNA Virus Replication Laboratory, The Francis Crick Institute, London, United Kingdom.
Coronaviruses express their structural and accessory genes via a set of subgenomic RNAs, whose synthesis is directed by transcription regulatory sequences (TRSs) in the 5' genomic leader and upstream of each body open reading frame. In SARS-CoV-2, the TRS has the consensus AAACGAAC; upon searching for emergence of this motif in the global SARS-CoV-2 sequences, we find that it evolves frequently, especially in the 3' end of the genome. We show well-supported examples upstream of the Spike gene-within the nsp16 coding region of ORF1b-which is expressed during human infection, and upstream of the canonical Envelope gene TRS, both of which have evolved convergently in multiple lineages.
View Article and Find Full Text PDFmBio
January 2025
Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan.
The human cellular cytidine deaminases APOBEC3s (A3s) inhibit virion infectivity factor (Vif)-deficient HIV-1 replication. However, virus-encoded Vifs abolish this defense system by specifically recruiting A3s to an E3 ubiquitin ligase complex to induce their degradation. The highly conserved Vif PPLP motif is critical for the Vif-mediated antagonism of A3s and is believed to be important for Vif multimerization.
View Article and Find Full Text PDFClin Genet
January 2025
Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
Bainbridge-Ropers Syndrome (BRPS) is a genetic condition resulting from truncating variants in the ASXL3 gene. The clinical features include neurodevelopmental and language impairments, behavioral issues, hypotonia, feeding difficulties, and distinctive facial features. In this retrospective study, we analyzed 22 Spanish individuals with BRPS, aiming to perform a detailed clinical and molecular description and establish a genotype-phenotype correlation.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder. Although individuals with variants in the SMC1A gene are less commonly seen in CdLS, they exhibit a high incidence of epilepsy and atypical phenotypic variability.
Methods: The clinical data of a patient with non-classic CdLS and epilepsy caused by an SMC1A variant were summarized.
Mater Today Bio
February 2025
Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
Protein-based biomaterials are in high demand due to their high biocompatibility, non-toxicity, and biodegradability. In this study, we explore the bacterial secreted protein A (EspA), which self-assembles into long extracellular filaments, as a potential building block for new protein-based biomaterials. We investigated the morphological and mechanical properties of EspA filaments and how protein engineering can modify them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!