Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsityper) for use with the Bruker MALDI BioTyper has facilitated the processing required for identification of pathogens directly from positive from blood cultures. We report the results of an evaluation of the accuracy, cost, and turnaround time of this method for 61 positive monomicrobial and 2 polymicrobial cultures representing 26 species. The Bruker MALDI BioTyper with the Sepsityper gave a valid (score, >1.7) identification for 85.2% of positive blood cultures with no misidentifications. The mean reduction in turnaround time to identification was 34.3 h (P < 0.0001) in the ideal situation where MALDI-TOF was used for all blood cultures and 26.5 h in a more practical setting where conventional identification or identification from subcultures was required for isolates that could not be directly identified by MALDI-TOF. Implementation of a MALDI-TOF-based identification system for direct identification of pathogens from blood cultures is expected to be associated with a marginal increase in operating costs for most laboratories. However, the use of MALDI-TOF for direct identification is accurate and should result in reduced turnaround time to identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457416 | PMC |
http://dx.doi.org/10.1128/JCM.01479-12 | DOI Listing |
Brucellosis, caused by a facultative intracellular gram-negative coccobacillus, is one of the most common zoonotic infections worldwide. Very rarely, brucellosis can cause periprosthetic joint infections (PJI). In this case-based literature review, we summarize the current medical literature regarding Brucella PJI, with the aim to raise awareness among clinicians, particularly in non-endemic areas.
View Article and Find Full Text PDFInt J Qual Health Care
January 2025
Department of Public Health, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
Background: Safety culture development is essential for patient safety in healthcare institution. Perceptions of patient safety and cultural changes are reflected in patient safety reports; however, they were rarely investigated. The aim of this study was to investigate the perception of physicians and to explore the development of safety culture using quantitative content analysis for patient safety reports.
View Article and Find Full Text PDFAm J Forensic Med Pathol
January 2025
County of Santa Clara, Medical Examiner-Coroner Office, San Jose, CA.
There are few reports that discuss the nebulous entity known as posttraumatic subacute meningitis. Herein, we describe a case where a male was found deceased with Streptococcus pyogenes meningitis 7 days after experiencing head trauma inflicted with a tow chain. Computed tomography scan prior to death revealed a scalp laceration with subcutaneous gas and a subdural hematoma.
View Article and Find Full Text PDFExpert Rev Mol Diagn
January 2025
Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.
Introduction: Rapid and accurate laboratory diagnosis is essential for the effective treatment of bloodstream infection (BSI).
Areas Covered: This review aims to address novel and traditional approaches that exhibit different performance characteristics in the diagnosis of BSI. In particular, the authors will discuss the pros and cons of the blood culture-based phenotypic methods, nucleic acid-targeted molecular methods, and host response-targeted biomarker detection in the diagnosis of BSI.
Adv Sci (Weinh)
January 2025
School of Integrated Circuits, Peking University, Beijing, 100871, China.
The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!