Background And Aims: The aquatic moss Fontinalis antipyretica requires a slow rate of dehydration to survive a desiccation event. The present work examined whether differences in the dehydration rate resulted in corresponding differences in the production of reactive oxygen species (ROS) and therefore in the amount of cell damage.

Methods: Intracellular ROS production by the aquatic moss was assessed with confocal laser microscopy and the ROS-specific chemical probe 2,7-dichlorodihydrofluorescein diacetate. The production of hydrogen peroxide was also quantified and its cellular location was assessed.

Key Results: The rehydration of slowly dried cells was associated with lower ROS production, thereby reducing the amount of cellular damage and increasing cell survival. A high oxygen consumption burst accompanied the initial stages of rehydration, perhaps due to the burst of ROS production.

Conclusions: A slow dehydration rate may induce cell protection mechanisms that serve to limit ROS production and reduce the oxidative burst, decreasing the number of damaged and dead cells due upon rehydration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448433PMC
http://dx.doi.org/10.1093/aob/mcs180DOI Listing

Publication Analysis

Top Keywords

dehydration rate
12
aquatic moss
12
ros production
12
cellular location
8
reactive oxygen
8
oxygen species
8
production
6
ros
5
impact dehydration
4
rate
4

Similar Publications

Layered double hydroxides (LDH) are compounds with unique structures of hydroxide functional groups on their surfaces, and they have the proper arrangement of divalent and trivalent cations to adjust their unique catalytic actions. LDH was synthesized utilizing the co-precipitation technique and was thermally treated at 300 °C. The prepared compounds were chemically and structurally elucidated using FT-IR, XRD, SEM, BET, TG-DTA, and XPS characterization.

View Article and Find Full Text PDF

Background: Low anterior resection (LAR) is the gold standard for curative cancer treatment in the middle and upper rectum. In radically operated patients, the local recurrence rates with total mesorectal excision (TME) after 5 and 10 years was<10%, with 80% in 5 years survival. Anastomotic leakage (AL) affects 4%-20% of patients who underwent LAR.

View Article and Find Full Text PDF

Menstrual cycle effects on thermoregulation while exercising in the heat.

J Therm Biol

January 2025

School of Integrative Physiology and Athletic Training, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA. Electronic address:

Women may be challenged to maintain thermoregulation due to hormonal changes associated with the menstrual cycle. The purpose of this study was to assess the effect of the menstrual cycle phase on core temperature, hydration status, and perceived exertion while exercising under uncompensable heat gain. Eleven eumenorrheic women (24.

View Article and Find Full Text PDF

Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic and Bariatric Surgery (MBS) for adolescents has been made more accessible due to recent policy changes, but challenges remain, particularly for diverse populations.
  • A study from 2017-2022 revealed that about 15%-20% of MBS cases in the U.S. involved adolescents, predominantly females and white patients with an average age of 16.1 years.
  • Despite a decline in cases during COVID-19, the volume rebounded, with an increase in sleeve gastrectomy and robotic-assisted surgeries, while overall complication rates remained low at 2.9%.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!