Influenza is a major cause of morbidity and mortality in the United States. Studies have shown that excessive T cell activity can mediate pneumonitis in the setting of influenza infection, and data from the 2009 H1N1 pandemic indicate that critical illness and respiratory failure postinfection were associated with greater infiltration of the lungs with CD8+ T cells. T cell Ig and mucin domain 3 (Tim3) is a negative regulator of Th1/Tc1-type immune responses. Activation of Tim3 on effector T cells has been shown to downregulate proliferation, cell-mediated cytotoxicity, and IFN-γ production, as well as induce apoptosis. In this article, we demonstrate that deletion of the terminal cytoplasmic domain of the Tim3 gene potentiates its ability to downregulate Tc1 inflammation, and that this enhanced Tim3 activity is associated with decreased phosphorylation of the TCR-CD3ζ-chain. We then show that mice with this Tim3 mutation infected with influenza are protected from morbidity and mortality without impairment in viral clearance or functional heterotypic immunity. This protection is associated with decreased CD8+ T cell proliferation and decreased production of inflammatory cytokines, including IFN-γ. Furthermore, the Tim3 mutation was protective against mortality in a CD8+ T cell-specific model of pneumonitis. These data suggest that Tim3 could be targeted to prevent immunopathology during influenza infection and demonstrate a potentially novel signaling mechanism used by Tim3 to downregulate the Tc1 response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436990PMC
http://dx.doi.org/10.4049/jimmunol.1102483DOI Listing

Publication Analysis

Top Keywords

influenza infection
12
enhanced tim3
8
tim3 activity
8
morbidity mortality
8
tim3
8
domain tim3
8
downregulate tc1
8
associated decreased
8
tim3 mutation
8
influenza
5

Similar Publications

Objectives: Acute respiratory illnesses have a disproportionate impact on older people, and especially those living in residential aged care facilities where transmission risks are heightened. Additionally, staff in these facilities have been working under challenging conditions, often ill-equipped in terms of both training and resources to successfully manage the outbreaks of these illnesses. This paper examines the actions of an Australian public health unit to improve influenza outbreak management in residential aged care facilities and critiques the outcomes through a contemporary lens.

View Article and Find Full Text PDF

Randomised trial of same vs opposite arm co-administration of inactivated influenza and SARS-CoV-2 mRNA vaccines.

JCI Insight

January 2025

Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.

Background: The immunogenicity of current influenza vaccines need improvement. Inactivated influenza and COVID-19 mRNA vaccines can be co-administered but randomized controlled trial data is lacking on whether the two vaccines are more immunogenic if given in the same or opposite arms. Murine studies suggest mRNA vaccines can adjuvant influenza vaccines when co-formulated and delivered together.

View Article and Find Full Text PDF

Targeted Enrichment Sequencing Utilizing a Respiratory Pathogen Panel for Genomic Wastewater-Based Viral Epidemiology in Uruguay.

Food Environ Virol

January 2025

Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.

Human respiratory and enteric viruses are responsible for substantial morbidity and mortality worldwide. Wastewater-based epidemiology utilizing next-generation sequencing serves as an effective tool for monitoring viral circulation dynamics at the community level. However, these complex environmental samples are often laden with other microorganisms and host genomic material, which can hinder the sensitivity of viral detection.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has significantly altered the etiological spectrum and epidemiological characteristics of pediatric respiratory diseases, and a profound understanding of these changes is crucial for guiding clinical treatment. The purpose of this study is to analyze the etiological patterns and epidemiological features of pathogens in bronchoalveolar lavage fluid (BALF) from children with pediatric lower respiratory tract infections (LRTIs) after the COVID-19 pandemic, with the aim of providing effective therapeutic evidence for clinical practice.

Methods: This study enrolled pediatric patients diagnosed with LRTIs who were treated and underwent BALF pathogen detection at our hospital from June 1, 2023, to June 1, 2024.

View Article and Find Full Text PDF

Objectives: Highly pathogenic avian influenza (HPAI) poses an occupational risk for poultry workers, responders, and others in contact with infected birds. The objective of this analysis was to describe HPAI surveillance methods and outcomes, and highlight the challenges, successes, and lessons learned during the Minnesota Department of Health's (MDH's) public health response to HPAI outbreaks in Minnesota poultry flocks in the years 2015 and 2022-2023.

Methods: During both outbreaks, MDH staff attempted to contact all potentially exposed people and conduct a standardized interview.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!