Mechano growth factor (MGF) promotes proliferation and inhibits differentiation of porcine satellite cells (PSCs) by down-regulation of key myogenic transcriptional factors.

Mol Cell Biochem

College of Animal Science/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China.

Published: November 2012

Porcine satellite cells represent an ideal model system for studying the cellular and molecular basis regulating myogenic stem cell proliferation and differentiation and for exploring the experimental conditions for myoblast transplantation. Here, we investigated the effects of mechano growth factor (MGF), a spliced variant of the IGF-1 gene, on porcine satellite cells. We show that MGF potently stimulated proliferation while inhibited differentiation of porcine satellite cells. MGF-treatment acutely down-regulates the expression of myogenic determination factor (MyoD) and the cyclin-dependent kinase inhibitor p21. MGF-treatment also markedly reduced the overall expression of cyclin B1 and key factors of the myogenic regulatory and myocyte enhancer families, including Myogenein and MEF2A. Taken together, the gene expression data from MGF-treated porcine satellite cells are in favor of a molecular model in which MGF inhibits porcine satellite cell differentiation by down-regulating either the activity or expression of MyoD, which, in turn, suppresses the expression of key genes required for cell cycle progression and differentiation, such as p21, Myogenin, and MEF2. Overall, our findings are in support of the previous suggestion that MGF may be used in vivo and in vitro to promote proliferation of myogenic stem cells to prevent and treat age-related muscle degenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-012-1413-9DOI Listing

Publication Analysis

Top Keywords

porcine satellite
24
satellite cells
20
mechano growth
8
growth factor
8
factor mgf
8
differentiation porcine
8
myogenic stem
8
porcine
6
satellite
6
cells
6

Similar Publications

Deletion of RBM20 exon 9 impairs skeletal muscle growth and satellite cell function in pigs.

Biochem Biophys Res Commun

January 2025

Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China. Electronic address:

Maintaining healthy skeletal tissue is essential for overall well-being and quality of life. Skeletal muscle plays a key role in this process, yet models for studying its detailed function are limited. While RNA-binding motif protein 20 (RBM20) is primarily associated with dilated cardiomyopathy (DCM), its role in skeletal muscle remains largely unexplored.

View Article and Find Full Text PDF

Vaccination is a strategy in pig farming for the control of several pathogens, but commercial vaccines may have detrimental side effects. This study aimed to evaluate the effects of commercial vaccines on the control of porcine circovirus type 2 (PCV2), (Mhp), and (. ) and their potential side effects on welfare, behavior, acute inflammation biomarkers (C-reactive protein and haptoglobin), and the performance of piglets during the nursery phase.

View Article and Find Full Text PDF

Identification of novel transcription factors regulated by H3K27 acetylation in myogenic differentiation of porcine skeletal muscle satellite cells.

FASEB J

November 2024

Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.

H3K27 acetylation (H3K27ac) is crucial in muscle development as it regulates gene expression. Dysregulation of H3K27ac level has been linked to muscle-related diseases such as Duchenne muscular dystrophy, yet the mechanisms through which H3K27ac influences myogenic differentiation are not fully understood. Here, we utilized the SGC-CBP30 drug, a CBP/p300 bromodomain inhibitor, to reduce H3K27ac level and investigated its effect on myogenic differentiation of porcine skeletal muscle satellite cells.

View Article and Find Full Text PDF

Skeletal muscle stem cells, or satellite cells, are vital for cultured meat production, driving proliferation and differentiation to form muscle fibers in vitro. However, these abilities are often compromised after long-term in vitro culturing due to a loss of their stemness characteristics. Therefore, effective pharmacological agents that enhance satellite cell proliferation and maintain stemness ability are needed for optimal cell growth for cultured meat production.

View Article and Find Full Text PDF

We aimed to determine the effects of oleic acid (OA) and palmitic acid (PA), alone or in combination, on proliferation, differentiation, triacylglycerol (TAG) content, and gene expression in porcine muscle satellite cells (PMSCs). Results revealed that OA-alone- and PA + OA-treated PMSCs showed significantly increased viability than those in the control or PA-alone-treated groups. No significant effects on apoptosis were observed in all three treatments, whereas necrosis was significantly lower in OA-alone- and PA + OA-treated groups than in the control and PA-alone-treated groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!