Endocytic receptors in the renal proximal tubule.

Physiology (Bethesda)

Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark.

Published: August 2012

Protein reabsorption is a predominant feature of the renal proximal tubule. Animal studies show that the ability to rescue plasma proteins relies on the endocytic receptors megalin and cubilin. Recently, studies of patients with syndromes caused by dysfunctional receptors have supported the importance of these for protein clearance of human ultrafiltrate. This review focuses on the molecular biology and physiology of the receptors and their involvement in renal pathological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiol.00022.2012DOI Listing

Publication Analysis

Top Keywords

endocytic receptors
8
renal proximal
8
proximal tubule
8
receptors renal
4
tubule protein
4
protein reabsorption
4
reabsorption predominant
4
predominant feature
4
feature renal
4
tubule animal
4

Similar Publications

Reproductive success requires accurately timed remodeling of the cervix to orchestrate the maintenance of pregnancy, the process of labor, and birth. Prior work in mice established that a combination of continuous turnover of fibrillar collagen and reduced formation of collagen cross-links allows for the gradual increase in tissue compliance and delivery of the fetus during labor. However, the mechanism for continuous collagen degradation to ensure turnover during cervical remodeling is still unknown.

View Article and Find Full Text PDF

Renal nerves and hypertension contribute to impaired proximal tubule megalin-mediated albumin uptake in renovascular hypertensive rats.

Hypertens Res

January 2025

Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.

Proteinuria, especially albuminuria, serves as an independent risk factor for progression in cardiovascular and renal diseases. Clinical and experimental studies have demonstrated that renal nerves contribute to renal dysfunction in arterial hypertension (AH). This study hypothesizes that renal nerves mediate the mechanisms of protein endocytosis by proximal tubule epithelial cells (PTEC) and glomerular function; with dysregulation of the renal nerves contributing to proteinuria in Wistar rats with renovascular hypertension (2-kidney, 1-clip model, 2K-1C).

View Article and Find Full Text PDF

Many membrane proteins on the cell surface are constantly internalized from, and re-delivered to, the plasma membrane. This endocytic cycling, which relies on accurate SNARE-mediated fusion of vesicles containing cargo proteins, is highly important for the function of many proteins such as signaling receptors. While the SNARE proteins that mediate fusion during specific events, such as neurotransmitter and hormone release, in mammalian cells has been heavily studied, the SNARE proteins that mediate surface delivery of specific cargo such as the receptors for these released factors are still not known.

View Article and Find Full Text PDF

Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host-Pathogen Interaction.

Cells

December 2024

Molecular and Cellular Microbiology Laboratory, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.

Within mammalian cells, diverse endocytic mechanisms, including phagocytosis, pinocytosis, and receptor-mediated endocytosis, serve as gateways exploited by many bacterial pathogens and toxins. Among these, caveolae-mediated endocytosis is characterized by lipid-rich caveolae and dimeric caveolin proteins. Caveolae are specialized microdomains on cell surfaces that impact cell signaling.

View Article and Find Full Text PDF

GABA receptors mediate prolonged inhibition in the brain and are important for keeping neuronal excitation and inhibition in a healthy balance. However, under excitotoxic/ischemic conditions, GABA receptors are downregulated by dysregulated endocytic trafficking and can no longer counteract the severely enhanced excitation, eventually triggering neuronal death. Recently, we developed interfering peptides targeting protein-protein interactions involved in downregulating the receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!