Vascular aging and essential hypertension cause similar structural and molecular modifications in the vasculature. The 12-lipoxygenase (LO) pathway of arachidonic acid metabolism is linked to cell growth and the pathology of hypertension. Thus, elevated expression of 12-LO has been observed in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). In the present study, we investigated the differences in 12-LO expression and activity between VSMCs from old normotensive Wistar-Kyoto rats (old WKY, 90-week old) and SHR (13-week old). The protein and mRNA expression of basal or angiotensin II (Ang II)-induced 12-LO in old WKY VSMCs were higher than those in SHR VSMCs. The degradation rate of 12-LO mRNA in old WKY VSMCs was slower than that in SHR VSMCs. However, basal or Ang II-induced 12-LO mRNAs in both old WKY and SHR VSMCs decayed more rapidly than that in young WKY (13-week old) VSMCs. Higher expression of 12-LO in old WKY VSMCs than in SHR VSMCs was correlated with the expression level of Ang II subtype 1 receptor (AT(1)R). The reduced levels of nitric oxide (NO) in old WKY and SHR VSMCs compared with young WKY VSMCs were similar, and there was no significant difference in NO production between old WKY and SHR VSMCs transfected with 12-LO siRNA. In addition, in contrast to the proliferation of SHR VSMCs, the proliferation of old WKY VSMCs was not dependent on 12-LO activation. These results suggest that the potential role of 12-LO in normotensive aging vasculature may be different from that in SHR vasculature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/hr.2012.119 | DOI Listing |
Free Radic Biol Med
October 2024
From the Department of Basic Medical College, Harbin Medical University (Daqing), Daqing, China. Electronic address:
Hypertension is a major global health issue, contributing to significant cardiovascular morbidity and mortality. Mitochondrial dysfunction, particularly through dysregulated mitophagy, has been implicated in the pathogenesis of hypertension. We wanted to find out the relationship between mitochondrial autophagy and changes in arterial smooth muscle cell tension and the molecular mechanism.
View Article and Find Full Text PDFFront Cardiovasc Med
September 2024
Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
Objective: Polyenylphosphatidylcholine (PPC), a significant therapeutic agent for liver repair, exhibits potent antioxidant and anti-inflammatory properties. Nonetheless, its impact on hypertension and hypertensive vascular diseases requires clarification. Our objective was to elucidate the protective role and mechanism of PPC in a spontaneously hypertensive rat model.
View Article and Find Full Text PDFJ Intern Med
November 2024
Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Aachen, Germany.
Sci Rep
July 2024
Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China.
Clin Sci (Lond)
July 2024
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!