The formation of "polydopamine" thin films becomes a popular method to confer multifunctionality to solid-liquid interfaces through the available catechol groups of such films. The mechanism of film formation is, however, not well elucidated, and most investigators use the protocol developed by Messersmith et al. (H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426.) using a dopamine solution at a constant concentration of 2 g L(-1) in the presence of Tris(hydroxymethyl aminomethane) at pH 8.5. A particular finding of this initial study was that the film thickness reaches a constant value (almost substrate independent) of about 40 nm. Herein, we investigate the change in the polydopamine film thickness, morphology, surface energy and electrochemical properties as a function of the concentration of the dopamine solution put in the presence of silicon substrates. As a surprising finding, we observe a constant increase in the maximal film thickness with an increase in the dopamine solution between 0.1 and 5 g L(-1). The surface morphology is also markedly affected by the concentration of the dopamine solution, whereas the different components of the surface energy stay unaffected by the dopamine solution concentration. In addition, electrochemical impedance spectroscopy shows that the higher the initial dopamine concentration, the more rapidly compact and impermeable films are formed. Finally, we propose a model for the deposition of polydopamine films taking all our findings into account. This model relies on a rate equation taking into account both attractive and repulsive interactions between small polydopamine aggregates on the surface and in solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2012.07.030 | DOI Listing |
ACS Biomater Sci Eng
December 2024
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
Adhesives have garnered significant interest recently due to their application in the field of biomedical applications. Nonetheless, developing adhesives that exhibit robust underwater adhesion and possess antimicrobial properties continues to pose a significant challenge. In this study, motivated by the adhesive mechanism observed in mussels in aquatic environments, dopamine (DA) was added to modify the silk fibroin (SF) solution.
View Article and Find Full Text PDFNanotechnology
December 2024
Chemistry, American University, 4400 Massachusetts Ave NW, Washington, Washington, District of Columbia, 20016-8002, UNITED STATES.
A phenol contains a six-membered, conjugated, aromatic ring that is bound to a hydroxyl group. These molecules are important in biomedical studies, aromatic food preparation, and petroleum engineering. Traditionally, phenols have been measured with several analytical techniques such as UV-VIS spectroscopy, fluorescence, liquid chromatography, and mass spectrometry.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
Detecting medically important biomarkers in complex biological samples without prior treatment or extraction poses a major challenge in biomedical analysis. Electrochemical methods, specifically electrochemiluminescence (ECL), show potential due to their high sensitivity, minimal background noise, and straightforward operation. This study investigates the ECL performance of screen-printed electrodes (SPEs) modified with the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives for dopamine (DA) detection.
View Article and Find Full Text PDFNanoscale
December 2024
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
Multiple functional tailored materials have shown great potential for both pollutant degradation and freshwater recovery. In this study, we synthesized densely distributed Co onto carbon-layer-coated Ni/AlO hydrangea composites (Ni/AlO@Co) the polymerization of dopamine under a controlled graphitized process. The characterization results revealed that Ni/AlO@Co, with abundant exposed bimetallic Co-Ni species on the surface of AlO, could afford accessible catalytic sites for persulphate activation and subsequent pollutant degradation.
View Article and Find Full Text PDFDiscov Oncol
December 2024
Nuclear Medicine Department, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Objective: To construct polydopamine (PDA)-based nanoparticles (NPs) for combined chemotherapy (CT) and photothermal therapy (PTT) of thyroid tumors by conjugating doxorubicin (DOX) via Schiff base reaction and decorating with RGD peptide.
Methods: PDA NPs were synthesized using dopamine hydrochloride (DA) as the raw material and reacted with DOX-PEG-NH to obtain PDA-DOX NPs. Subsequently, RGD peptide was coupled with PDA-DOX NPs for modification.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!