Role of chronic E. coli infection in the process of bladder cancer- an experimental study.

Infect Agent Cancer

Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.

Published: August 2012

Background: Bladder cancer is a common malignancy in Egypt. A history of urinary tract infection can be considered as a risk factor for bladder cancer. Escherichia coli (E. coli) infection is responsible for 70% of urinary tract infection. This study aimed to evaluate the role of chronic E. coli infection during bladder carcinogenesis. In order to achieve this aim, we investigated the histopathological changes in bladder tissue and measured the level of nuclear factor kappa p65 (NF-κBp65), Bcl-2 and interleukin 6 (IL-6) in four groups each consisting of 25 male albino rats except of control group consisting of 20 rats. The first group was normal control group, the second group was infected with E. coli, the third group was administered nitrosamine precursor, and the forth group was infected with E. coli and administered nitrosamine precursor.

Results: The histopathological examination revealed that E. coli infected group was able alone to produce some histopathological changes in bladder tissue and that nitrosamine precursor plus E. coli group showed highest incidences of urinary bladder lesions than the nitrosamine precursor group. NF-κBp65, Bcl-2 and IL-6 levels were significantly higher in nitrosamine precursor plus E. coli group than the other groups.

Conclusion: These findings suggested that urinary bladder infection by E. coli may play a major additive and synergistic role during bladder carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511874PMC
http://dx.doi.org/10.1186/1750-9378-7-19DOI Listing

Publication Analysis

Top Keywords

nitrosamine precursor
16
coli infection
12
coli
10
group
10
bladder
9
role chronic
8
chronic coli
8
bladder cancer
8
urinary tract
8
tract infection
8

Similar Publications

Making Waves: Formulation components used in agriculture may serve as important precursors for nitrogenous disinfection byproducts.

Water Res

January 2025

Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States. Electronic address:

N-Nitrosamines, many of which are carcinogenic, mutagenic, and teratogenic, are disinfection byproducts (DBPs) formed from the reaction of chloramine with nitrogenous organic compounds during water disinfection. The identification of major nitrosamine precursors is important to understand and prevent nitrosamine formation. In this analysis, we propose that efforts to identify nitrosamine precursors must look beyond conventionally evaluated active agent chemicals to consider inert or inactive chemicals as potentially relevant precursors.

View Article and Find Full Text PDF

Impact of physicochemical and microbial drivers on the formation of disinfection by-products in drinking water distribution systems: A multivariate Bayesian network modeling approach.

Water Res

December 2024

Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.

The formation of disinfection byproducts (DBPs) in drinking water distribution systems (DWDS) is significantly affected by numerous factors, including physicochemical water properties, microbial community composition and structure, and the characteristics of organic DBP precursors. However, the codependence of various factors remains unclear, particularly the contribution of microbial-derived organics to DBP formation, which has been inadequately explored. Herein, we present a Bayesian network modeling framework incorporating a Bayesian-based microbial source tracking method and excitation-emission fluorescence spectroscopy-parallel factor analysis to capture the critical drivers influencing DBP formation and explore their interactions.

View Article and Find Full Text PDF

Photocatalytic degradation of tetracycline antibiotics and elimination of N-nitrosodimethylamine formation potential by BiOCl/ZnInS heterostructure under visible-light irradiation.

J Environ Manage

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.

Photocatalysis is an effective method for removing tetracycline antibiotics, which are important precursors to the potential carcinogen N-nitrosodimethylamine (NDMA). Herein, a BiOCl/ZnInS heterojunction was successfully synthesized using a simple hydrothermal method. This heterojunction was applied for the first time to degrade various tetracycline antibiotics and reduce NDMA formation potential (NDMA-FP) under visible-light irradiation.

View Article and Find Full Text PDF

In recent years, the detection of nitrosamine precursors has become an important issue for regulatory authorities such as the European Medicines Agency (EMA) and the Food and Drug Administration (FDA). The present study provides a pre-column derivatization method for the analysis of dimethylamine (DMA) and diethylamine (DEA) in pharmaceutical products using HPLC and a fluorescence detector. Appropriate chromatographic parameters, including mobile phase composition (organic solvent, buffer, pH), elution type, flow rate, temperature, and λexcitation/emission, were investigated.

View Article and Find Full Text PDF

Periodate (PI) shows promising potential as an oxidant for wastewater treatment; however, its impact on the toxicity of wastewater remains unknown. Here, we found that with 100 μM PI addition, the cytotoxicity of wastewater increased from 4.8 to 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!