A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chemoprevention of hepatocarcinogenesis with dietary isoprenic derivatives: cellular and molecular aspects. | LitMetric

Chemoprevention of hepatocarcinogenesis with dietary isoprenic derivatives: cellular and molecular aspects.

Curr Cancer Drug Targets

Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil.

Published: November 2012

Bioactive food components (BFACs) represent promising candidates for liver cancer chemoprevention. Among them, isoprenic derivatives (carotenoids, retinoids, perillyl alcohol, limonene, geraniol, farnesol, geranylgeraniol and β- ionone) can be highlighted. The relevance of animal models for the investigation of chemopreventive agents is supported by comparative functional genomic studies that reinforce the similarities between rodent and human hepatocarcinogenesis. Thus, characterization of BFACs in animal models as blocking and/or suppressing agents allows the establishment of the theoretical basis for the development of chemoprevention strategies. Dietary isoprenic derivatives actions on hepatocarcinogenesis may involve a block in carcinogen activation, induction of phase 2 enzymes and an antioxidant activity, as well as interference with cellular processes including cell communication, proliferation, apoptosis, differentiation and remodeling of preneoplastic lesions. Dietary isoprenic derivatives modulate molecular targets including HMG-CoA-reductase, Rho, nuclear receptors, c-myc, connexin 43, NF-κB and Nrf2. Several networks related to these targets are altered in early phases of hepatocarcinogenesis. This emphasizes the importance of such agents for the chemoprevention of hepatocellular carcinoma. Combinations of isoprenic derivatives or of these substances with other BFACs classes should be further investigated. Also, toxicity and bioavailability and pharmacokinetic aspects of these derivatives represent relevant issues in their development as chemopreventive agents. One major current limitation of the adoption of dietary isoprenic derivatives for liver cancer chemoprevention is the challenge in overcoming the initial preclinical phase in agent development. Dietary isoprenic derivatives that present liver cancer chemopreventive properties should be further explored in clinical trials, begining with the phase 0 approach.

Download full-text PDF

Source
http://dx.doi.org/10.2174/156800912803987986DOI Listing

Publication Analysis

Top Keywords

isoprenic derivatives
28
dietary isoprenic
20
liver cancer
12
derivatives
8
cancer chemoprevention
8
animal models
8
chemopreventive agents
8
derivatives liver
8
isoprenic
7
chemoprevention
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!