Unlabelled: A rapid, reliable method for distinguishing tumors or metastases that overexpress human epidermal growth factor receptor 2 (HER2) from those that do not is highly desired for individualizing therapy and predicting prognoses. In vivo imaging methods are available but not yet in clinical practice; new methodologies improving speed, sensitivity, and specificity are required.
Methods: A HER2-binding Affibody molecule, Z(HER2:342), was recombinantly fused with a C-terminal selenocysteine-containing tetrapeptide Sel-tag, allowing site-specific labeling with either (11)C or (68)Ga, followed by biodistribution studies with small-animal PET. Dosimetry data for the 2 radiotracers were compared. Imaging of HER2-expressing human tumor xenografts was performed using the (11)C-labeled Affibody molecule.
Results: Both the (11)C- and (68)Ga-labeled tracers initially cleared rapidly from the blood, followed by a slower decrease to 4-5 percentage injected dose per gram of tissue at 1 h. Final retention in the kidneys was much lower (>5-fold) for the (11)C-labeled protein, and its overall absorbed dose was considerably lower. (11)C-Z(HER2:342) showed excellent tumor-targeting capability, with almost 10 percentage injected dose per gram of tissue in HER2-expressing tumors within 1 h. Specificity was demonstrated by preblocking binding sites with excess ligand, yielding significantly reduced radiotracer uptake (P = 0.002), comparable to uptake in tumors with low HER2 expression.
Conclusion: To our knowledge, the Sel-tagging technique is the first that enables site-specific (11)C-radiolabeling of proteins. Here we present the finding that, in a favorable combination between radionuclide half-life and in vivo pharmacokinetics of the Affibody molecules, (11)C-labeled Sel-tagged Z(HER2:342) can successfully be used for rapid and repeated PET studies of HER2 expression in tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2967/jnumed.111.102194 | DOI Listing |
Biochim Biophys Acta
March 2013
Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Background: Radiolabeled annexin A5 (AnxA5) is widely used for detecting phosphatidylserine exposed on cell surfaces during apoptosis. We describe here a new method for labeling AnxA5 and a size-matched control protein with short-lived carbon-11, for probing the specificity of in vivo cell death monitoring using positron emission tomography (PET) imaging.
Methods: AnxA5 and the control protein were recombinantly expressed with a C-terminal "Sel-tag", the tetrapeptide -Gly-Cys-Sec-Gly-COOH.
J Nucl Med
September 2012
Division of Molecular Biotechnology, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden.
Unlabelled: A rapid, reliable method for distinguishing tumors or metastases that overexpress human epidermal growth factor receptor 2 (HER2) from those that do not is highly desired for individualizing therapy and predicting prognoses. In vivo imaging methods are available but not yet in clinical practice; new methodologies improving speed, sensitivity, and specificity are required.
Methods: A HER2-binding Affibody molecule, Z(HER2:342), was recombinantly fused with a C-terminal selenocysteine-containing tetrapeptide Sel-tag, allowing site-specific labeling with either (11)C or (68)Ga, followed by biodistribution studies with small-animal PET.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!