Background: Staphylococcus aureus produces numerous molecules that facilitate survival in the host. We recently identified a novel S. aureus leukotoxin (leukotoxin GH [LukGH]) using proteomics, but its role in virulence remains unclear. Here we investigated the role of LukGH in vivo.
Methods: We tested cytotoxicity of LukGH toward polymorphonuclear leukocytes (PMNs) from mice, rabbits, monkeys, and humans. LukGH was administered to mice, rabbits, and a cynomolgus monkey by subcutaneous or intradermal injection to assess cytotoxicity or host response in vivo. The effects of LukGH in vivo were compared with those of Panton-Valentine leukocidin (PVL), a well-characterized S. aureus leukotoxin. The contribution of LukGH to S. aureus infection was tested using mouse and rabbit infection models.
Results: Susceptibility of PMNs to LukGH was similar between humans and cynomolgus monkeys, and was greater than that of rabbits, which in turn was greater than that of mice. LukGH or PVL caused skin inflammation in rabbits and a monkey, but deletion of neither lukGH nor lukGH and lukS/F-PV reduced severity of USA300 infections in rabbits or mice. Rather, some disease parameters (eg, rabbit abscess size) were increased following infection with a lukGH and lukS/F-PV deletion strain.
Conclusions: Our findings indicate that S. aureus leukotoxins enhance the host inflammatory response and influence the outcome of infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448972 | PMC |
http://dx.doi.org/10.1093/infdis/jis495 | DOI Listing |
Sci Rep
December 2024
Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi state, MS, 39762, USA.
The production of lipopolysaccharide (LPS)-free recombinant proteins from culture supernatants is of great interest to biomedical research and industry. Due to the LPS-free cell wall structure and the well-defined secretion factor B (SecB)-dependent secretion pathway, Gram-positive bacteria are a superior alternative to Escherichia coli expression systems. However, the lack of inducible expression systems for high yields has been a bottleneck.
View Article and Find Full Text PDFmSphere
December 2024
Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark.
EBioMedicine
November 2024
Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark.
Trop Biomed
June 2024
Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Kuala Nerus, Terengganu, Malaysia.
Staphylococcus aureus is a common bacterial pathogen known to cause various kinds of infections due to its repertoire of virulence factors. This study aimed to investigate the distribution of 19 types of virulence genes among clinical isolates of methicillin-susceptible S. aureus (MSSA) using the polymerase chain reaction.
View Article and Find Full Text PDFPLoS One
July 2024
Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
Infectious and foodborne diseases pose significant global threats, with devastating consequences in low- and middle-income countries. Ozone, derived from atmospheric oxygen, exerts antimicrobial effects against various microorganisms, and degrades fungal toxins, which were initially recognized in the healthcare and food industries. However, highly concentrated ozone gas can be detrimental to human health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!