Functional magnetic resonance imaging analysis of food-related brain activity in patients with lipodystrophy undergoing leptin replacement therapy.

J Clin Endocrinol Metab

Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, and Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.

Published: October 2012

Context: Lipodystrophy is a disease characterized by a paucity of adipose tissue and low circulating concentrations of adipocyte-derived leptin. Leptin-replacement therapy improves eating and metabolic disorders in patients with lipodystrophy.

Objective: The aim of the study was to clarify the pathogenic mechanism of eating disorders in lipodystrophic patients and the action mechanism of leptin on appetite regulation.

Subjects And Interventions: We investigated food-related neural activity using functional magnetic resonance imaging in lipodystrophic patients with or without leptin replacement therapy and in healthy controls. We also measured the subjective feelings of appetite.

Results: Although there was little difference in the enhancement of neural activity by food stimuli between patients and controls under fasting, postprandial suppression of neural activity was insufficient in many regions of interest including amygdala, insula, nucleus accumbens, caudate, putamen, and globus pallidus in patients when compared with controls. Leptin treatment effectively suppressed postprandial neural activity in many of these regions of interest, whereas it showed little effect under fasting in patients. Consistent with these results, postprandial formation of satiety feeling was insufficient in patients when compared with controls, which was effectively reinforced by leptin treatment.

Conclusions: This study demonstrated the insufficiency of postprandial suppression of food-related neural activity and formation of satiety feeling in lipodystrophic patients, which was effectively restored by leptin. The findings in this study emphasize the important pathological role of leptin in eating disorders in lipodystrophy and provide a clue to understanding the action mechanism of leptin in human, which may lead to development of novel strategies for prevention and treatment of obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462942PMC
http://dx.doi.org/10.1210/jc.2012-1872DOI Listing

Publication Analysis

Top Keywords

neural activity
20
lipodystrophic patients
12
patients
9
leptin
9
functional magnetic
8
magnetic resonance
8
resonance imaging
8
leptin replacement
8
replacement therapy
8
eating disorders
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.

Background: The initiation of amyloid plaque deposition signifies a crucial stage in Alzheimer's disease (AD) progression, which often coincides with the disruption of neural circuits and cognitive decline. While the role of excitatory-inhibitory balance is increasingly recognized in AD pathophysiology, targeted therapies to modulate this balance remain underexplored. This study investigates the effect of perampanel, a selective non-competitive AMPA receptor antagonist, in modulating neurophysiological changes in hAPP-J20 transgenic Alzheimer's mice.

View Article and Find Full Text PDF

Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.

View Article and Find Full Text PDF

Background: Traditionally associated with recreational and spiritual uses, psychedelics have gained attention in psychotherapy for their therapeutic potential. Functioning as potent 5-hydroxytryptamine (5HT) agonists, these compounds have demonstrated the ability to enhance neural plasticity by activating serotoninergic and glutamatergic systems. Despite these recognized effects, their role in treating neurodegenerative disorders, particularly dementia, remains relatively unexplored.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.

Background: Aging associates with decreased functional connectivity between brain regions linked to musical rhythm perception. Producing rhythmic music may result in strengthened functional connectivity of these regions, but more evidence is needed to support intervention design. Currently, few studies directly contrast younger and older adults' rhythmic music performance to understand brain-behavior relationships.

View Article and Find Full Text PDF

ProPr54 web server: predicting σ promoters and regulon with a hybrid convolutional and recurrent deep neural network.

NAR Genom Bioinform

March 2025

Department of Molecular Genetics, Groningen, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.

σ serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ promoters and regulon in bacterial genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!