Fertilization-the fusion of gametes to produce a new organism-is the culmination of a multitude of intricately regulated cellular processes. In Caenorhabditis elegans, fertilization is highly efficient. Sperm become fertilization competent after undergoing a maturation process during which they become motile, and the plasma membrane protein composition is reorganized in preparation for interaction with the oocyte. The highly specialized gametes begin their interactions by signaling to one another to ensure that fertilization occurs when they meet. The oocyte releases prostaglandin signals to help guide the sperm to the site of fertilization, and sperm secrete a protein called major sperm protein (MSP) to trigger oocyte maturation and ovulation. Upon meeting one another in the spermatheca, the sperm and oocyte fuse in a specific and tightly regulated process. Recent studies are providing new insights into the molecular basis of this fusion process. After fertilization, the oocyte must quickly transition from the relative quiescence of oogenesis to a phase of rapid development during the cleavage divisions of early embryogenesis. In addition, the fertilized oocyte must prevent other sperm from fusing with it as well as produce an eggshell for protection during external development. This chapter will review the nature and regulation of the various cellular processes of fertilization, including the development of fertilization competence, gamete signaling, sperm-oocyte fusion, the oocyte to embryo transition, and production of an eggshell to protect the developing embryo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4614-4015-4_11 | DOI Listing |
Domest Anim Endocrinol
January 2025
BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:
This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Plant Protection, IPB University, Bogor, Indonesia.
Smallholder farmers produce over 40% of global palm oil, the world's most traded and controversial vegetable oil. Awareness of the effects of palm oil production on ecosystems and human communities has increased drastically in recent years, with ever louder calls for the private and public sector to develop programs to support sustainable cultivation by smallholder farmers. To effectively influence smallholder practices and ensure positive social outcomes, such schemes must consider the variety in perspectives of farmers and align with their priorities.
View Article and Find Full Text PDFPLoS One
January 2025
College of Agriculture, Guizhou University, Guiyang, China.
The impact of straw and biochar on carbon mineralization and the function of carbon cycle genes in paddy soil is important for soil nutrient management and the transformation of carbon pools. This research is based on a five-year field experiment with four treatments: no fertilizer application (CK); chemical fertilizer only (NPK); straw combined with chemical fertilizer (NPKS); and biochar combined with chemical fertilizer (NPKB). By integrating indoor mineralization culture with metagenomic approaches, we analyzed the response of organic carbon mineralization and carbon cycle genes in typical paddy soil from Guizhou Province, China, to different fertilization treatments.
View Article and Find Full Text PDFBoth male- and female-headed farm households grow maize in Ethiopia. However, little is known about the difference between male- and female-headed households in the adoption of high-yielding technologies for maize. This study examines the difference between male- and female-headed households in their decision to adopt and the intensity of adoption of improved maize technologies in Dawuro zone, Southwestern Ethiopia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!