Atomic force microscopy (AFM) combined with unroofing techniques enabled clear imaging of the intracellular cytoskeleton and the cytoplasmic surface of the cell membrane under aqueous condition. Many actin filaments were found to form a complex meshwork on the cytoplasmic surface of the membrane, as observed in freeze-etching electron microscopy. Characteristic periodic striations of about 5 nm formed by the assembly of G-actin were detected along actin filaments at higher magnification. Actin filaments aggregated and dispersed at several points, thereby dividing the cytoplasmic surface of the membrane into several large domains. Microtubules were also easily detected and were often tethered to the membrane surface by fine filaments. Furthermore, clathrin coats on the membrane were clearly visualized for the first time in water by AFM. Although the resolution of these images is lower than electron micrographs of freeze-etched samples processed similarly, the measurement capabilities of the AFM in a more biologically relevant conditions demonstrate that it is an important tool for imaging intracellular structures and cell surfaces in the native, aqueous state.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmicro/dfs055DOI Listing

Publication Analysis

Top Keywords

cytoplasmic surface
12
actin filaments
12
atomic force
8
imaging intracellular
8
surface membrane
8
membrane
5
unroofing technique
4
technique atomic
4
force microscopic
4
microscopic imaging
4

Similar Publications

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide. The recent announcement that lecanemab, a monoclonal antibody targeting amyloid-b, can slow down cognitive decline in AD is a great step forward in the battle against the disease. However, the modest success achieved in the clinical trial speak to the need for developing additional pharmaceutical approaches to target other key features of AD.

View Article and Find Full Text PDF

Tissue factor targeted near-infrared photoimmunotherapy: a versatile therapeutic approach for malignancies.

Cancer Immunol Immunother

January 2025

Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.

Tissue factor (TF) is a cell surface protein that plays a role in blood clotting but is also commonly expressed in many cancers. Recent research implicated TF in cancer proliferation, metastasis, angiogenesis, and immune escape. Therefore, TF can be considered a viable therapeutic target against cancer.

View Article and Find Full Text PDF

MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.

J Cell Biol

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!