Assessing the impact of thermal acclimation on physiological condition in the zebrafish model.

J Comp Physiol B

Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerpen, Belgium.

Published: January 2013

The zebrafish has become a valuable vertebrate model organism in a wide range of scientific disciplines, but current information concerning the physiological temperature response of adult zebrafish is rather scarce. In this study, zebrafish were experimentally acclimated for 28 days to 18, 26 or 34 °C and a suite of non-invasive and invasive methods was applied to determine the thermal dependence of zebrafish physiological condition. With decreasing temperature, the metabolic rate of zebrafish decreased, as shown by the decreasing oxygen uptake and ammonia excretion rates, limiting the critical swimming speed, probably due to a decreased muscle fibre power output. In response to exercise, fuel stores were mobilized to the liver as shown by the increased hepatosomatic index, liver total absolute energetic value and liver carbohydrate concentration but due to the low metabolic rate they could not be adequately addressed to power swimming activity at 18 °C. Conversely, the increased metabolic performance at high temperature came with an increased metabolic cost resulting in decreased energy status reflected particularly well by the non-invasive condition factor and invasive measures of carcass protein concentration, carcass total absolute energetic value and liver carbohydrate concentration. We showed that the combined measurement of the relative condition factor and critical swimming speed is a powerful non-invasive tool for long-term follow-up studies. Invasive methods were redundant for measuring general energy status but they provided detailed information concerning metabolic reorganization. With this study we proved that the usefulness of the zebrafish as a model organism can easily be expanded to include physiological studies and we provided a reference dataset for the selection of measures of physiological responses for future studies using the zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-012-0691-6DOI Listing

Publication Analysis

Top Keywords

physiological condition
8
zebrafish
8
zebrafish model
8
model organism
8
invasive methods
8
metabolic rate
8
critical swimming
8
swimming speed
8
total absolute
8
absolute energetic
8

Similar Publications

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Exogenous dsRNA triggers sequence-specific RNAi and fungal stress responses to control Magnaporthe oryzae in Brachypodium distachyon.

Commun Biol

January 2025

Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.

In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!