Spin-wave excitations revealed in the dynamically equilibrated one-dimensional superlattices formed due to phase separation and charge carrier self-organization in doped single crystals of Eu(0.8)Ce(0.2)Mn(2)O(5) and Tb(0.95)Bi(0.05)MnO(3) multiferroics are discussed. Similar excitations, but having lower intensities, were also observed in undoped RMn(2)O(5) (R=Eu, Er, Tb, Bi). This suggests that a charge transfer between manganese ions with different valences, which give rise to the superlattice formation, occurs in undoped multiferroics as well. The spin excitations observed in the native superlattices represent a set of homogeneous spin-wave resonances excited in individual superlattice layers. The positions of these resonances depend on the relation between the numbers of Mn(3+) and Mn(4+) ions, charge carrier concentrations, and barrier depths in the superlattice layers. It has been found that the spin-wave excitations observed in the frequency interval studied (30-50 GHz) form two spin-wave minibands with a gap between them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/24/34/346002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!