The blue light using flavin (BLUF) domain proteins, such as the transcriptional antirepressor AppA, are a novel class of photosensors that bind flavin noncovalently in order to sense and respond to high-intensity blue (450 nm) light. Importantly, the noncovalently bound flavin chromophore is unable to undergo large-scale structural change upon light absorption, and thus there is significant interest in understanding how the BLUF protein matrix senses and responds to flavin photoexcitation. Light absorption is proposed to result in alterations in the hydrogen-bonding network that surrounds the flavin chromophore on an ultrafast time scale, and the structural changes caused by photoexcitation are being probed by vibrational spectroscopy. Here we report ultrafast time-resolved infrared spectra of the AppA BLUF domain (AppA(BLUF)) reconstituted with isotopes of FAD, specifically [U-(13)C(17)]-FAD, [xylene-(13)C(8)]-FAD, [U-(15)N(4)]-FAD, and [4-(18)O(1)]-FAD both in solution and bound to AppA(BLUF). This allows for unambiguous assignment of ground- and excited-state modes arising directly from the flavin. Studies of model compounds and DFT calculations of the ground-state vibrational spectra reveal the sensitivity of these modes to their environment, indicating they can be used as probes of structural dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp305220m | DOI Listing |
ACS Chem Biol
January 2025
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.
OaPAC, the photoactivated adenylyl cyclase from , is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site.
View Article and Find Full Text PDFACS Phys Chem Au
November 2024
Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto-enol tautomerization of Gln48 are thought to occur.
View Article and Find Full Text PDFIUCrJ
November 2024
Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38044 Grenoble, France.
OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources.
View Article and Find Full Text PDFJ Phys Chem B
April 2024
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Park 904, Amsterdam 1098 XH, The Netherlands.
Flavins play an important role in many oxidation and reduction processes in biological systems. For example, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are common cofactors found in enzymatic proteins that use the special redox properties of these flavin molecules for their catalytic or photoactive functions. The redox potential of the flavin is strongly affected by its (protein) environment; however, the underlying molecular interactions of this effect are still unknown.
View Article and Find Full Text PDFJ Phys Chem B
March 2024
Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!