The paper describes the synthesis and antimicrobial (antileishmanial, antibacterial and antifungal) activity of some classical hydrazones of benzophenones and of 1,2-diketones. N-(Diaryl) acyl derivatives of these hydrazones have also been synthesized and evaluated. 4,4,-Demthoxybenzil monohydrazone and 4,4'-dimethoxybenzophenone hydrazone showed significant antileishmanial activity. The effect of substituents on the bioactivity is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-012-0608-7DOI Listing

Publication Analysis

Top Keywords

classical hydrazones
8
antileishmanial antibacterial
8
antibacterial antifungal
8
evaluation classical
4
hydrazones ketones
4
ketones 12-diketones
4
12-diketones antileishmanial
4
antifungal agents
4
agents paper
4
paper describes
4

Similar Publications

Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry.

Pharmaceuticals (Basel)

September 2024

Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada.

: The incorporation of radionuclides into peptides and larger biomolecules requires efficient and sometimes biorthogonal reaction conditions, to which click chemistry provides a convenient approach. : Traditionally, click-based radiolabeling techniques have focused on classical click chemistry, such as copper(I)-catalyzed alkyne-azide [3+2] cycloaddition (CuAAC), strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), traceless Staudinger ligation, and inverse electron demand Diels-Alder (IEDDA). : However, newly emerging click-based radiolabeling techniques, including tyrosine-click, sulfo-click, sulfur(VI) fluoride exchange (SuFEx), thiol-ene click, azo coupling, hydrazone formations, oxime formations, and RIKEN click offer valuable alternatives to classical click chemistry.

View Article and Find Full Text PDF

Recent patch-clamp studies of mitoplasts have challenged the traditional view that classical chemical uncoupling (by e.g. FCCP or DNP) is due to the protonophoric property of these substances themselves.

View Article and Find Full Text PDF

Considering the complex pathogenesis of Alzheimer's disease (AD), the multi-target ligand strategy is expected to provide superior effects for the treatment of the neurological disease compared to the classic single target strategy. Thus, one novel pyrrole-based hydrazide () and four corresponding hydrazide-hydrazones () were synthesized by applying highly efficient MW-assisted synthetic protocols. The synthetic pathway provided excellent yields and reduced reaction times under microwave conditions compared to conventional heating.

View Article and Find Full Text PDF

Continuous Synthesis and Processing of Covalent Organic Frameworks in a Flow Reactor.

ACS Appl Mater Interfaces

September 2024

Department of Chemical and Biomolecular Engineering, Rice University, MS-362, 6100 Main Street, Houston, Texas 77005, United States.

Covalent organic frameworks (COFs) are typically prepared in the form of insoluble microcrystalline powders using batch solvothermal reactions that are energy-intensive and require long annealing periods (>120 °C, >72 h). Thus, their wide-scale adoption in a variety of potential applications is impeded by complications related to synthesis, upscaling, and processing, which also compromise their commercialization. Here we report a strategy to address both the need for scalable synthesis and processing approaches through the continuous, accelerated synthesis, and processing of imine- and hydrazone-linked COFs using a flow microreactor.

View Article and Find Full Text PDF

Macroautophagy/autophagy is a constitutively active catabolic lysosomal degradation pathway, often found dysregulated in human diseases. It is often considered to act in a cytoprotective manner and is commonly upregulated in cells undergoing stress. Its initiation is regulated at the protein level and does not require protein synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!