Quantifiable modification of standardized low-resolution brain electromagnetic tomography (sLORETA-qm), which is one of the non-adaptive beamformer spatial filtering techniques, has been applied to source localization and quantification of evoked field or oscillatory changes in magnetoencephalography (MEG). Here, we extended this technique to induced oscillatory brain activity changes, so-called event-related desynchronization or event-related synchronization. For localizing of significantly activated brain areas at the whole-brain level, permutation tests and multiple comparison corrections with false discovery rate were applied. Induced β- and γ-band oscillatory changes by right hand clenching task were demonstrated as an example of simple induced brain activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412199PMC
http://dx.doi.org/10.2174/1874440001206010037DOI Listing

Publication Analysis

Top Keywords

oscillatory changes
12
quantifiable modification
8
induced oscillatory
8
changes magnetoencephalography
8
brain activity
8
extension quantifiable
4
modification sloreta
4
induced
4
sloreta induced
4
oscillatory
4

Similar Publications

Intermittent negative pressure is an emerging treatment for lower limb vascular disease but the specific physiological effects, particularly upon large artery haemodynamics are unclear. This study examined the influence of intermittent negative pressure upon popliteal artery shear rate during both supine and sitting postures. Eleven healthy participants (5 female; age: 28.

View Article and Find Full Text PDF

Excessive beta oscillations in the subthalamic nucleus are established as a primary electrophysiological biomarker for motor impairment in Parkinson's disease and are currently used as feedback signals in adaptive deep brain stimulation systems. However, there is still a need for optimization of stimulation parameters and the identification of optimal biomarkers that can accommodate varying patient conditions, such as ON and OFF levodopa medication. The precise boundaries of 'pathological' oscillatory ranges, associated with different aspects of motor impairment, are still not fully clarified.

View Article and Find Full Text PDF

Background: Selective attention is a fundamental cognitive mechanism that allows people to prioritise task-relevant information while ignoring irrelevant information. Previous research has suggested key roles of parietal event-related potentials (ERPs) and alpha oscillatory responses in attention tasks. However, the informational content of these signals is less clear, and their causal effects on the coding of multiple task elements are yet unresolved.

View Article and Find Full Text PDF

Previous research demonstrated that transcranial alternating current stimulation (tACS) can induce phosphene perception. However, tACS involves rhythmic changes in the electric field and alternating polarity (excitatory vs. inhibitory phases), leaving the precise mechanism behind phosphene perception unclear.

View Article and Find Full Text PDF

Optogenetic control of cAMP oscillations reveals frequency-selective transcription factor dynamics in Dictyostelium.

Development

January 2025

Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.

Oscillatory dynamics and their modulation are crucial for cellular decision-making; however, analysing these dynamics remains challenging. Here, we present a tool that combines the light-activated adenylate cyclase mPAC with the cAMP biosensor Pink Flamindo, enabling precise manipulation and real-time monitoring of cAMP oscillation frequencies in Dictyostelium. High-frequency modulation of cAMP oscillations induced cell aggregation and multicellular formation, even at low cell densities, such as a few dozen cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!