The accessory α(2)δ subunits of voltage-gated calcium channels are membrane-anchored proteins, which are highly glycosylated, possess multiple disulfide bonds, and are post-translationally cleaved into α(2) and δ. All α(2)δ subunits have a C-terminal hydrophobic, potentially trans-membrane domain and were described as type I transmembrane proteins, but we found evidence that they can be glycosylphosphatidylinositol-anchored. To probe further the function of membrane anchoring in α(2)δ subunits, we have now examined the properties of α(2)δ-1 constructs truncated at their putative glycosylphosphatidylinositol anchor site, located before the C-terminal hydrophobic domain (α(2)δ-1ΔC-term). We find that the majority of α(2)δ-1ΔC-term is soluble and secreted into the medium, but unexpectedly, some of the protein remains associated with detergent-resistant membranes, also termed lipid rafts, and is extrinsically bound to the plasma membrane. Furthermore, heterologous co-expression of α(2)δ-1ΔC-term with Ca(V)2.1/β1b results in a substantial enhancement of the calcium channel currents, albeit less than that produced by wild-type α(2)δ-1. These results call into question the role of membrane anchoring of α(2)δ subunits for calcium current enhancement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460456PMC
http://dx.doi.org/10.1074/jbc.M112.378554DOI Listing

Publication Analysis

Top Keywords

α2δ subunits
16
c-terminal hydrophobic
8
membrane anchoring
8
anchoring α2δ
8
calcium
4
calcium currents
4
currents enhanced
4
enhanced α2δ-1
4
α2δ-1 lacking
4
membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!