Transgene integration complexity in the recipient genome can be an important determinant of transgene expression and field performance in transgenic crops. We provide the first direct comparison of Agrobacterium-mediated transformation (AMT) and particle bombardment using whole plasmid (WP) and excised minimal cassettes (MC), for transformation efficiency, transgene integration complexity and transgene expression in plants. To enable direct comparison, a selectable marker and a luciferase reporter gene were linked in identical configurations in plasmids suitable for AMT or direct gene transfer into sugarcane. Transformation efficiencies were similar between WP and MC when equal molar DNA quantities were delivered. When the MC concentration was reduced from 66 to 6.6 ng per shot, transformation efficiency dropped fourfold, to a level equivalent with AMT in amenable genotype Q117. The highest proportion of transformants combining low copy number (estimated below two integrated copies by qPCR) with expression of the non-selected reporter gene was obtained using AMT (55 %) or MC at low DNA concentration (30 %). In sugarcane, both of these methods yielded high-expressing, single-copy transgenic plant lines at a workable efficiency for practical plant improvement; but AMT is currently limited to a few amenable genotypes. These methods are best coupled with rapid early screens for desired molecular characteristics of transformants, e.g. PCR screens for low copy number and/or transcription of the gene of practical interest.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11248-012-9639-6DOI Listing

Publication Analysis

Top Keywords

particle bombardment
8
bombardment plasmid
8
transgene integration
8
integration complexity
8
transgene expression
8
direct comparison
8
transformation efficiency
8
reporter gene
8
low copy
8
copy number
8

Similar Publications

, a genus of fungi known for its fermentation capability and production of bioactive compounds, such as azaphilone pigments and Monacolin K, have received considerable attention because of their potential in biotechnological applications. Understanding the genetic basis of these metabolic pathways is crucial for optimizing the fermentation and enhancing the yield and quality of these products. However, spp.

View Article and Find Full Text PDF

Nano-assisted delivery tools for plant genetic engineering: a review on recent developments.

Environ Sci Pollut Res Int

December 2024

Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, UP, India.

Conventional approaches like Agrobacterium-mediated transformation, viral transduction, biolistic particle bombardment, and polyethylene glycol (PEG)-facilitated delivery methods have been optimized for transporting specific genes to various plant cells. These conventional approaches in genetically modified crops are dependent on several factors like plant types, cell types, and genotype requirements, as well as numerous disadvantages such as time-consuming, untargeted distribution of genes, and high cost of cultivation. Therefore, it is suggested to develop novel techniques for the transportation of genes in crop plants using tailored nanoparticles (NPs) of manipulative and controlled high-performance features synthesized using green and chemical routes.

View Article and Find Full Text PDF

Basic helix-loop-helix (bHLH) proteins comprise a large family of transcription factors that are involved in plant growth and development, as well as responses to various types of environmental stress. (birch) is a pioneer tree species in secondary forest that plays a key role in maintaining ecosystem stability and forest regeneration, but few bHLHs involved in abiotic stress responses have been unveiled in birch. In this study, nine BpbHLH TFs related to stress responses in the birch genome were identified.

View Article and Find Full Text PDF

CRISPR/Cas9 ribonucleoprotein mediated DNA-free genome editing in larch.

For Res (Fayettev)

October 2024

State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.

Here, a DNA-free genetic editing approach is presented for larch by delivering ribonucleoprotein complexes (RNPs) of CRISPR/Cas9 through particle bombardment. The detailed procedure encompasses creating a transgenic system particle bombardment for the transformation of embryogenic callus, validating the functionality of RNPs, optimizing coating and delivery techniques, enhancing somatic embryo maturation, regenerating plantlets, and precisely identifying mutants. The optimal particle bombardment parameters were determined at 1,100 psi and a distance of 9 cm and the editing efficiency of the targets was verified .

View Article and Find Full Text PDF

The tissue culture process is usually involved in gene transfer and genome editing in plants. Like other species, there is enormous variation among wheat genotypes in tissue culture response. In the rapidly advancing system of CRISPR/Cas9 for genome editing, particle bombardment has received increasing attention as a delivery method for a large amount of nucleic acids and RNA-protein complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!