Background: The single nucleotide polymorphism (SNP) rs738409 in patatin-like phospholipase domain-containing protein 3 (PNPLA3) is associated with hepatic fat accumulation and disease progression in patients with non-alcoholic fatty liver disease and alcoholic liver disease (ALD). This study was conducted to determine whether PNPLA3 rs738409 SNPs affect development and prognosis of hepatocellular carcinoma (HCC) in patients with various liver diseases.
Methods: We enrolled 638 consecutive Japanese patients newly diagnosed with HCC between 2001 and 2010: 72 patients with hepatitis B virus (HBV), 462 with hepatitis C virus (HCV), and 104 with non-B non-C (NBNC).
Results: NBNC patients exhibited large tumors of advanced TNM stages at HCC diagnosis, and had significantly poorer prognosis than HBV or HCV patients (P < 0.001 and <0.001, respectively; log-rank test). The G/G genotype of PNPLA3 rs738409 SNP had significantly higher distribution in NBNC patients (P < 0.001) and was significantly associated with higher body mass index (BMI) and an increased aspartate aminotransferase to platelet ratio index. No significant differences were observed in survival with differences in PNPLA3 SNP genotypes among the patients, although ALD patients with the G/G genotype of PNPLA3 SNP and low BMI had significantly poorer survival than those with high BMI (P = 0.028).
Conclusions: The G/G genotype of PNPLA3 rs738409 SNP was more frequently distributed, and associated with BMI and fibrosis among NBNC-HCC patients but not among HBV or HCV patients. These genotypes might affect HCC prognosis in ALD patients, but not in HBV, HCV, or NAFLD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00535-012-0647-3 | DOI Listing |
Metabolites
December 2024
Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy.
Background/objectives: Low fasting blood lysosomal acid lipase (LAL) activity is associated with the pathogenesis of metabolic hepatic steatosis. We measured LAL activity in blood and plasma before and after an oral fat tolerance test (OFTT) in patients with metabolic-dysfunction-associated steatotic liver disease (MASLD).
Methods: Twenty-six controls and seventeen patients with MASLD but without diabetes were genotyped for the patatin-like phospholipase 3 (PNPLA3) rs738409 variant by RT-PCR and subjected to an OFTT, measuring LAL activity in blood and plasma with a fluorimetric method.
JGH Open
December 2024
Department of Gastroenterology, Hematology and Clinical Immunology Hirosaki University Graduate School of Medicine Hirosaki Japan.
Background And Aim: Identifying the factors contributing to the progression of metabolic dysfunction-associated steatotic liver disease (MASLD), a lifestyle-related disease, is crucial for preventing future liver-related deaths. This study aimed to epidemiologically investigate factors, including single-nucleotide polymorphisms (SNPs) associated with alanine aminotransferase (ALT) levels >30 U/L and potential risk factors for liver fibrosis, in a general population cohort of patients with MASLD.
Methods: Among 1059 participants in the health checkup project, 228 who were diagnosed with MASLD were analyzed.
Int J Biol Macromol
December 2024
National Institute of Plant genome Research, New Delhi 110067, India. Electronic address:
Autophagy
December 2024
Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
The intricate balance between lipolysis and lipophagy in cellular lipid homeostasis has fascinated researchers for years. A growing body of evidence highlights the critical roles of PNPLA2/ATGL (patatin like phospholipase domain containing 2) in both lipolysis and lipophagy. Here, we discuss our recent study, which revealed that PNPLA2 must be S-acylated on Cys15 for its robust catalytic activity.
View Article and Find Full Text PDFbioRxiv
November 2024
Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202.
The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!