Plants possess an innate immune system enabling them to defend themselves against pathogen attack. The accumulation of newly synthesized pathogenesis-related proteins (PRs) is one of the most studied inducible plant defence response. In this paper, we report on the characterization of a class I PR4 vacuolar protein from Arabidopsis, named AtHEL. The protein has a modular structure consisting of an N-terminal hevein-like domain (CB-HEL) and a C-terminal domain (CD-HEL) that are posttranslationally processed. Both domains show a strong antifungal activity, but they do not have chitinolitic properties. CD-HEL was found to be endowed with RNase, but not DNase activity. Molecular modeling carried out on both domains revealed that CB-HEL possesses a chitin binding site strictly conserved between hevein-type peptides and that the cavity involved in substrate interaction of CD-HEL do not show any residue substitution with respect to the orthologous wheatwin1 from wheat. Using a fishing for partners approach, CB-HEL was found to interact with a fungal fruiting body lectin. According to literature, we can hypothesize that CB-HEL could cross the pathogen hyphal membrane and that its interaction with a fungal lectin could knock out one of the weapons that the fungus uses.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2012-0225DOI Listing

Publication Analysis

Top Keywords

modular structure
8
protein arabidopsis
8
structure hel
4
hel protein
4
arabidopsis reveals
4
reveals potential
4
potential functions
4
functions pr-4
4
pr-4 proteins
4
proteins plants
4

Similar Publications

Objective: This study presents the results of a surgical instrument tray optimization process implemented across all surgical specialties within the largest university hospital in Denmark.

Methods: Data was extracted from a comprehensive instrument optimization process including all Operating Rooms at Aarhus University Hospital. Adopting a holistic perspective, the optimization process, involved aligning instrument trays across various surgical specialties.

View Article and Find Full Text PDF

Insights into incompatible plasmids in multidrug-resistant Raoultella superbugs.

BMC Microbiol

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.

The emergence of multidrug-resistant (MDR) Raoultella isolates is linked to the acquisition of antibiotic resistance genes (ARGs) with plasmids playing a pivotal role in this process. While plasmid-mediated transmission of ARGs in Raoultella has been extensively reported, limited attention has been given to genetically dissecting the modular structures of plasmids. This study aims to elucidate the genomic features of novel incompatible plasmids in MDR Raoultella by presenting 13 complete plasmid sequences from four isolates, along with an analysis of 16 related plasmids from GenBank.

View Article and Find Full Text PDF

With the escalating demand for exploration within confined spaces, bionic design methodologies have attracted considerable attention from researchers, primarily due to the intrinsic limitations of human access to hazardous environments. However, contemporary bionic robots primarily attain linear motion through the axial radial deformation of their body segments, thereby lacking the upright functionality that is characteristic of these organisms. In response to the limitations associated with current bionic earthworm robots concerning upright capability and stiffness modulation, we propose an innovative bionic robot that incorporates upright functionality and programmable stiffness.

View Article and Find Full Text PDF

Bispecific antibodies (bsAbs) represent a rapidly growing field of therapeutic agents. More bsAbs are being approved worldwide and are in various stages of clinical trials. However, the discovery and production of novel bsAbs presents significant challenges due to their complex structure.

View Article and Find Full Text PDF

The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!