High-resolution crystal structure of the isolated ribosomal L1 stalk.

Acta Crystallogr D Biol Crystallogr

Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation.

Published: August 2012

The crystal structure of the isolated full-length ribosomal L1 stalk, consisting of Thermus thermophilus ribosomal protein L1 in complex with a specific 80-nucleotide fragment of 23S rRNA, has been solved for the first time at high resolution. The structure revealed details of protein-RNA interactions in the L1 stalk. Analysis of the crystal packing enabled the identification of sticky sites on the protein and the 23S rRNA which may be important for ribosome assembly and function. The structure was used to model different conformational states of the ribosome. This approach provides an insight into the roles of domain II of L1 and helix 78 of rRNA in ribosome function.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0907444912020136DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
structure isolated
8
ribosomal stalk
8
23s rrna
8
rrna ribosome
8
high-resolution crystal
4
structure
4
isolated ribosomal
4
stalk crystal
4
isolated full-length
4

Similar Publications

Photonic axion insulator.

Science

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties.

View Article and Find Full Text PDF

Unraveling the metabolism of Treponema pallidum is a key component to understanding the pathogenesis of the human disease that it causes, syphilis. For decades, it was assumed that glucose was the sole carbon/energy source for this parasitic spirochete. But the lack of citric-acid-cycle enzymes suggested that alternative sources could be utilized, especially in microaerophilic host environments where glycolysis should not be robust.

View Article and Find Full Text PDF

The similar structures of natural compounds and the absence of NMR data for commercial products raise the risk of misidentification. This work reports a case in which purchased samples labeled as "berbamine" from 14 suppliers are oxyacanthine (). The NMR data of all purchased samples were consistent.

View Article and Find Full Text PDF

The direct incorporation of borondipyrromethene (BODIPY) subunits into the structural backbone of covalent organic frameworks (COFs) gives facile access to porous photosensitizers but is still a challenging task. Here, we introduce β‑ketoenamine-linked BDP‑TFP‑COF, which crystallizes in AA‑stacking mode with hcb topology. A comprehensive characterization reveals high crystallinity and enhanced stability in a variety of solvents, excellent mesoporosity (SABET = 1042 m2 g-1), broad light absorption in the visible region, and red emission upon the exfoliation of few-layer COF nanosheets.

View Article and Find Full Text PDF

Innate immunity relies on Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns. The TIR (Toll/interleukin-1 receptor) domain-containing TLR adaptors TRIF (TIR domain-containing adaptor-inducing interferon-β) and TRAM (TRIF-related adaptor molecule) are essential for MyD88-independent TLR signaling. However, the structural basis of TRIF and TRAM TIR domain-based signaling remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!