Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes.

J Hazard Mater

MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.

Published: October 2012

The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1-40.3% and 33.9-37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2012.07.033DOI Listing

Publication Analysis

Top Keywords

co-contaminated soil
8
sedum alfredii
8
alfredii ddt-degrading
8
ddt-degrading microbes
8
bioremediation strategy
8
1-dichloro-2 2-bis
8
2-bis 4-chlorophenyl
8
pot experiment
8
levels dds
8
co-contaminated
5

Similar Publications

Field-scale screening of pumpkin cultivars for cost-effectiveness of "repairing while producing" in cadmium-arsenic co-contaminated agricultural land.

Food Chem X

January 2025

Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.

Soil contamination with heavy metals poses a significant health risk as these metals can be transferred to humans through agricultural products. This study aimed to identify pumpkin varieties with low cadmium and arsenic accumulation. To this end, we evaluated 25 pumpkin varieties.

View Article and Find Full Text PDF

A novel immobilized bacteria consortium enhanced remediation efficiency of PAHs in soil: Insights into key removal mechanism and main driving factor.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

The remediation of sites co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) poses challenges for efficient and ecofriendly restoration methods. In this study, three strains (Pseudomonas sp. PDC-1, Rhodococcus sp.

View Article and Find Full Text PDF

Attenuated cadmium and arsenic enrichment in rice by co-application of organic composting and chemical fertilization.

Sci Rep

December 2024

College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China.

A pot experiment was conducted on arsenic (As) and cadmium (Cd) co-contaminated soil to discern the influence of varying proportions of pig manure compost (PM) vis-à-vis chemical fertilizers (NPK) on the mitigation of Cd and As absorption by rice. Our findings illustrated that by increasing the PM proportions from 25 to 100%, it manifested a statistically significant reduction in the mobilized fractions of Cd, accounting for up to 77% reduction in soil CaCl-Cd concentrations. Conversely, the NaHCO-As reactions were contingent on the distinct PM application rates.

View Article and Find Full Text PDF

[Characteristics of Cd, As, and Pb Pollution in Farmland Soil and Edible Parts of Chili Pepper and Sweet Potato and Their Health Risk Assessment].

Huan Jing Ke Xue

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Ecological Environment of Farmland in Hebei, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, China.

To clarify the characteristics of Cd, As, and Pb concentrations in edible parts of crops and farmland soils, a key farmland survey was conducted on the field scale to investigate the characteristics of Cd, As, and Pb in soil and chili pepper (edible parts in the above-ground section) and sweet potato (edible parts under the ground) and assess the health risk of Cd-As-Pb in edible parts of chili pepper and sweet potato to humans in the typical co-contaminated agricultural soils by Cd, As, and Pb from metal smelting and sewage irrigation in North China. The results showed that the agricultural soil from chili pepper and sweet potato fields was co-contaminated by Cd and As at a moderate pollution level. The combined pollution index (2.

View Article and Find Full Text PDF

Cadmium (Cd) and arsenic (As) often coexist in water and agricultural soils around mining areas, and it is difficult to remove them at the same time due to their opposite chemical behaviors. Therefore, this study employed a co-precipitation-pyrolysis method to synthesize silica-based magnetic biochar (SMB) materials for the remediation of water contaminated with both Cd and As. The optimization of preparation conditions involved introducing three different types of silicates (NaSiO, CaSiO,and SiO) into the biomass-magnetite mixture, followed by pyrolysis at various temperatures (300℃, 500℃, and 700℃), and the optimal preparation conditions were determined based on the composite batch experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!