Purpose: It has been reported that granulocyte colony-stimulating factor (G-CSF) provides neuroprotection in models in which neuronal cell death is induced. This research was designed to investigate the effects of G-CSF on neurodegeneration of the inner retinal layer in a rat model of ischemic reperfusion (I/R) injury.
Materials And Methods: Retinal ischemia was induced by increasing the intraocular pressure to 110 mm Hg for 45 min in the left eyes of the rats. A sham operation was carried out on the right eyes. G-CSF (100 µg/kg/day in 0.3 ml saline) or the same volume of saline was intraperitoneally injected just before the operation and continued for 4 consecutive days (a total of 5 consecutive days). Morphological examinations, including the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, were performed 7 days after I/R induction. The expression of phosphorylated AKT in the retina was examined by Western blot analysis and immunohistochemistry.
Results: Cell loss in the ganglion cell layer was more significantly reduced in the I/R-induced eyes of the G-CSF-injected rats than in the I/R-induced eyes of the saline-injected rats (20.3 vs. 6.6%). The inner retinal thickness ratios, such as the inner plexiform layer to the inner limiting membrane/outer nuclear layer and the inner nuclear layer/outer nuclear layer, were significantly better preserved in the I/R-induced eyes of the G-CSF-injected rats than in the I/R-induced eyes of the saline-injected rats. TUNEL assays showed fewer apoptotic cells in the retinal sections of the I/R-induced eyes of the G-CSF-injected rats. The phosphorylation of AKT (p-AKT/AKT) was upregulated in the retinas of the I/R-induced eyes of the G-CSF-injected rats.
Conclusion: Our results demonstrated that systemic injection of G-CSF can protect retinal ganglion cells and inner retinal layers from I/R injury. The effects could be associated with the activation of AKT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000340059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!