AI Article Synopsis

  • Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease (JD) in ruminants and can enter a dormant phase outside the host, leading to potential immune evasion.
  • In vitro studies indicate that certain MAP genes are regulated under stress conditions, which may play a role in how the bacteria avoid detection by the host's immune system.
  • The study produced and purified five dormancy-related proteins, which showed that sheep exposed to MAP had significantly higher antibody levels compared to unexposed sheep, indicating potential for these proteins as diagnostic tools.

Article Abstract

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD) in ruminants. MAP is known to enter a dormant phase outside the host, typically on soil. In vitro experiments have reported regulation of certain MAP genes when exposed to stressors similar to what is thought to produce dormancy. It is believed that in vivo regulation of dormancy genes and associated proteins by MAP may play a role in evading the host defence mechanisms and induce the host immune response against these dormancy-related proteins. Five proteins encoded by dormancy-related genes that were previously found to be upregulated under stress conditions and predicted through in silico analysis to possess immune epitopes (three hypothetical proteins and two proteins involved in fatty acid metabolism) were selected. Recombinant proteins were produced, purified and evaluated by indirect enzyme-linked immunosorbent assay (ELISA) for immunogenicity using a panel of sera obtained from sheep unexposed and exposed to MAP. The antibody levels of the exposed group were significantly higher than the unexposed group (P<0.001). Individually, the five proteins were found to discriminate between sera from sheep exposed to MAP compared to unexposed sheep. At 91% diagnostic specificity, the diagnostic sensitivity of the recombinant antigen ELISA ranged from 24% to 42% and AUC(ROC) from 0.7015 to 0.8405.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetimm.2012.06.026DOI Listing

Publication Analysis

Top Keywords

mycobacterium avium
8
avium subsp
8
subsp paratuberculosis
8
paratuberculosis map
8
recombinant proteins
8
upregulated stress
8
stress conditions
8
proteins proteins
8
proteins
7
map
6

Similar Publications

Unlabelled: The complex (MAC) is a common causative agent causing nontuberculous mycobacterial (NTM) pulmonary disease worldwide. Whole-genome sequencing was performed on a total of 203 retrospective MAC isolates from respiratory specimens. Phylogenomic analysis identified eight subspecies and species.

View Article and Find Full Text PDF

Bayesian estimation of diagnostic accuracy of fecal smears, fecal PCR and serum ELISA for detecting Mycobacterium avium subsp. paratuberculosis infections in four domestic ruminant species in Saudi Arabia.

Vet Microbiol

January 2025

Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Research Chair in Biosecurity of Dairy Production, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.

Paratuberculosis, a chronic wasting disease affecting domestic and wild ruminants worldwide, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). Various diagnostic tests exist for detecting MAP infection; however, none of them possess perfect accuracy to be qualified as a reference standard test, particularly due to their notably low sensitivity.

View Article and Find Full Text PDF

Objective: The global prevalence of nontuberculous mycobacterial pulmonary disease (NTM-PD) has been steadily increasing. A few small retrospective studies have reported a poor prognosis associated with chronic pulmonary aspergillosis (CPA) as a complication of NTM-PD. Furthermore, the prognostic impact of CPA may have been inadequately assessed due to differences in background factors.

View Article and Find Full Text PDF

The incidence of infections caused by the complex (MAC) has risen significantly, posing diagnostic and therapeutic challenges. This study analyzed 134 clinical isolates of the complex from southern Spain, performing in vitro antimicrobial susceptibility testing using a commercial microdilution technique to generate additional data, refine treatment strategies, and improve patient outcomes. Phenotypic susceptibility testing revealed clarithromycin and amikacin as the most effective antibiotics, with susceptibility rates exceeding 90%, while linezolid and moxifloxacin exhibited limited activity, with resistance rates of 49.

View Article and Find Full Text PDF

Paratuberculosis (PTB), primarily caused by subsp. (MAP), is a chronic infection that affects ruminants and is difficult to prevent, diagnose, and treat. Investigating how MAP infections affect the gut microbiota in sheep can aid in the prevention and treatment of ovine PTB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!