Lycopersicon esculentum leaves, usually considered as a by-product of tomato production, present several bioactive compounds of interest for industries like food, pharmaceutical and cosmetics. Nevertheless, before industrial application, suitable methods to identify and quantify those metabolites should be developed. In this study agitation with aqueous methanol was used for phenolic compounds extraction. Solid-phase extraction (SPE) was performed as the purification step before alkaloids analysis. Among the SPE sorbents tested, sulphonic acid bonded silica with H(+) counterion (SCX) proved to be the most efficient one for removing interfering components. Fifteen phenolics and four steroidic alkaloids were identified in 35 and 20 min analysis, respectively. The optimised methods were validated, revealing to be accurate, fast, simple and sensitive. Thus, these methods represent an easy and fast analytical approach, using equipment available in almost laboratory, which render them to be appropriate for routine analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2012.05.016 | DOI Listing |
Inflamm Res
January 2025
Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China.
Background: Traditional Chinese medicine (TCM) is a valuable resource for drug discovery and has demonstrated excellent efficacy in treating inflammatory diseases. This study aimed to develop a universal gene signature-based strategy for high-throughput discovery of anti-inflammatory drugs, especially Traditional Chinese medicine (TCM).
Methods: The disease gene signature of liposaccharide-stimulated THP-1 cells and drug gene signatures of 655 drug candidates were established via sequencing.
Arch Pharm (Weinheim)
January 2025
Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.
2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
In a quest to innovate biologically active molecules, the benzoylation of 4,6-dimethylpyrimidine-2-thiol hydrochloride (1) with benzoyl chloride derivatives was employed to produce a series of pyrimidine benzothioate derivatives (2-5). Subsequent sulfoxidation of these derivatives (2-5) using hydrogen peroxide and glacial acetic acid yielded a diverse array of pyrimidine sulfonyl methanone derivatives (6-9). In parallel, the sulfoxidation of pyrimidine sulfonothioates (10-12) yielded sulfonyl sulfonyl pyrimidines (13-15), originating from the condensation of compound 1 with sulfonyl chloride derivatives.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Research Unit Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany.
Morphological profiling has recently demonstrated remarkable potential for identifying the biological activities of small molecules. Alongside the fully supervised and self-supervised machine learning methods recently proposed for bioactivity prediction from Cell Painting image data, we introduce here a semisupervised contrastive (SemiSupCon) learning approach. This approach combines the strengths of using biological annotations in supervised contrastive learning and leveraging large unannotated image data sets with self-supervised contrastive learning.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver 91897, Mexico. Electronic address:
Honokiol (HK) and Magnolol (MG), isomers found in Magnolia officinalis bark extract (MBE), possess bioactive properties attributed to their biphenolic structure. However, their low polarity results in poor oral absorption, limiting their bioavailability. To enhance their systemic absorption after passing through the digestive tract, efficient carrier systems are essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!